Programme Name/s	: Computer Technology/ Computer Engineering/ Computer Science & Engineering/ Computer Hardware & Maintenance/ Computer Science
Programme Code	: CM/ CO/ CW/ HA/ SE
Semester	: Third
Course Title	: COMPUTER GRAPHICS
Course Code	: 313001

I. RATIONALE

Computer Graphics is the discipline of generating images with the aid of computers. This course provides an introduction to the principles of Computer Graphics. In particular, the course will consider methods for Object Design, Transformation, Scan Conversion, Visualization and Modelling of real world and enables student to create impressive graphics easily and efficiently.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to attain following Industry Identified Competency through various Teaching Learning Experiences:

Develop programs using Graphics concepts.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Manipulate Visual and Geometric information of Images.
- CO2 Develop programs in C applying standard graphics algorithms.
- CO3 Perform and Demonstrate basic and composite graphical transformations on given object.
- CO4 Implement various Clipping algorithms.
- CO5 Develop programs to create Curves.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

	1.11			L	earı	ning	Sche	ieme		Assessment Scheme											
Course Code	Course Title	Abbr	Course Category/s	Co Hrs	ctua onta ./W	ct eek		NLH	Credits	Duration		The				sed o T Prac		&	Base S	L	Total Marks
				CL	TL	ĻL					FA- TH	SA- TH	To	tal	FA-	PR	SA-	PR	SI	A	
		e *							· ·		Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
1313001	COMPUTER GRAPHICS	CGR	DSC	1	-	2	1	4	2	Ň		. . .	1	-	25	10		-	25	10	50

Total IKS Hrs for Sem. : 0 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.		
1	TLO 1.1 Describe coordinate system. TLO 1.2 Select and use various graphics file formats. TLO 1.3 Use different graphics functions and standards.	1.2 Graphics file formats: Basics, advantages, disadvantages – BMP – GIF – JPEG – TIFF – PCXe different graphics1.3 Graphics functions & standards: Text mode,			
2	TLO 2.1 Apply Line Drawing algorithms to generate Line. TLO 2.2 Apply Circle Drawing algorithms to generate Circle. TLO 2.3 Apply Polygon Filling algorithms to Fill Polygon.	 Unit - II Raster Scan Graphics 2.1 Line Drawing Algorithms : Digital Differential Analyzer algorithm, Bresenham's algorithm. 2.2 Circle Generation- Symmetry of Circle, Bresenham's algorithm 2.3 Polygon Filling : Seed Fill algorithms- Flood Fill algorithm, Boundary Fill algorithm. 	Lecture Using Chalk-Board Demonstration Hands-on		
3	TLO 3.1 Perform various transformations on given graphics object. TLO 3.2 Use composite transformations. TLO 3.3 Write need of homogeneous coordinates.	Unit - III Overview of 2D And 3D Transformations 3.1 Basic Transformations: Translation, Scaling, Rotation. 3.2 Matrix representations & homogeneous coordinates. 3.3 Composite transformations. 3.4 Three-dimensional transformation. 3.5 Other transformations: Reflection, Shear.	Lecture Using Chalk-Board Demonstration Hands-on		
4	TLO 4.1 Define: Windowing and Clipping. TLO 4.2 Apply Clipping algorithms for Line and Polygon.	Clipping algorithm, Mid-Point Subdivision Line			

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Course Code : 313001

Sr.No	Theory Learning Outcomes	Learning content mapped with Theory	Suggested Learning
	(TLO's)aligned to CO's.	Learning Outcomes (TLO's) and CO's.	Pedagogies.
5	TLO 5.1 Draw various Curves using Curve generation algorithms. TLO 5.2 Identify different types of Projections.	Unit - V Introduction to Curves and Projections 5.1 Bezier and B-Spline Curves. 5.2 Projections: Perspective and Parallel Projection and its types.	Lecture Using Chalk-Board Demonstration Hands-on

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Implement a C program using different graphics functions.				CO1
LLO 2.1 Implement a C program to draw line using DDA algorithm.	2	*Write a C program to draw line using DDA algorithm.	2	CO2
LLO 3.1 Implement a C program to draw line using Bresenham's algorithm.	3	Write a C program to draw line using Bresenham's algorithm.	2	CO2
LLO 4.1 Implement a C program to draw circle using Bresennham's algorithm.	4	*Write a C program to draw circle using Bresenham's algorithm.	2	CO2
LLO 5.1 Implement a C program for Flood fill algorithm.	5	*Write a C program for Flood fill algorithm of polygon filling.	2	CO2
LLO 6.1 Implement a C program for Boundary fill algorithm.	6	Write a C program for Boundary fill algorithm of polygon filling.	2	CO2
LLO 7.1 Implement a C program for 2D Translation and Scaling			4	CO3
LLO 8.1 Implement a C program for 2D Rotation.	8	Write a C program for 2D Rotation.	2	CO3
LLO 9.1 Implement a C program for 2D Reflection and Shear.			4	CO3
LLO 10.1 Implement a C program for 3D Translation and Scaling.	10	*Write a C program for 3D Translation and Scaling .	4	CO3
LLO 11.1 Implement a C program for 3D Rotation	11	Write a C program for 3D Rotation.	2	CO3
LLO 12.1 Implement a C program for Line Clipping using Cohen- Sutherland algorithm.	12	*Write a C program for Line Clipping using Cohen-Sutherland algorithm.	2	CO4
tor I the C libbing lising N light 0 int		Write a C program for Line Clipping using Midpoint Subdivision algorithm.	2	CO4
Clipping. Polygon Clipping.		Write a C program for Sutherland Hodgeman Polygon Clipping.	2	CO4
LLO 15.1 Implement a C program for Bezier Curve.	15	Write a C program for Bezier Curve.	2	CO5
LLO 15.1 Implement a C program			2	

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

https://services.msbte.ac.in/scheme_digi/pdfdownload/download/

Micro project

- Implement Snake Game
- Design Smile Face
- Design Digital Clock
- Any other micro projects suggested by subject teacher.
- Develop program for moving Car

Self learning

- Develop C language code for relevant topics suggested by the teacher
- Any computer graphics course suggested by teacher (NPTEL, MOOCs courses etc.)

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Computer System with basic configuration.	All
2	'C' Compiler	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R- Level	U- Level	A- Level	Total Marks
1	Ι	Basics of Computer Graphics	CO1	2	0	0	0	0
2	II	Raster Scan Graphics	CO2	4	0	0	0	0
3	III	Overview of 2D And 3D Transformations	CO3	4	0	0	0	0
4	IV	Windowing and Clipping Techniques	CO4	3	0	0	0	0
5	V	Introduction to Curves and Projections	CO5	2	0	0	0	0
		Grand Total		15	0	0	0	0

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

 Continuous Assessment based on Process and Product related performance indicators. Each practical will be assessed considering 60% weightage to Process 40% weightage to Product

Summative Assessment (Assessment of Learning)

•

COMPUTER GRAPHICS

XI. SUGGESTED COS - POS MATRIX FORM

	Programme Outcomes (POs)									me c es*)
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis		PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management		1	PSO- 2	PSO- 3
CO1	2	2	2	2	1	1	1			
CO2	2	2	2	2	-	1	1			
CO3	2	2	2	2		1	1			
CO4	2	2	2	2	-	1	1			
CO5	2	2	2	2		1	. 1			
			2,Low:01, No institute level	Mapping: -		141				

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number			
1	Donald Hearn , M Pauline Baker	Computer Graphics	Prentice-Hall • ISBN-10 : 0131615300 • ISBN- 13 : 978-0131615304			
2	William M. Newman Robert F. Sproull	Principles of Interactive Computer Graphics	McGraw-Hill • ISBN: 978-0-07-046338-7			
3	Zhigang Xiang, Roy Plastock	Computer Graphics	Schaum O Series • ISBN: 9789389538847 • ISBN: 938953884X			
4	Atul P. Godse, Dr. Deepali A. Godse	Computer Graphics	Technical Publications ISBN 933322338X, 9789333223386			

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.javatpoint.com/computer-graphics-programs	Basic graphics programs
2	https://www.tutorialspoint.com/computer_graphics/index.htm	Basics of computer graphics
3	https://www.educba.com/line-drawing-algorithm/	Line drawing algorithm
4	https://www.javatpoint.com/computer-graphics-clipping	Clipping Algorithms
5	https://www.tutorialspoint.com/computer_graphics/computer_gr aphics_curves.htm	Curves in computer graphics
6	https://www.tutorialspoint.com/computer_graphics/2d_transfor mation.htm	2D and 3D Transformation
7	https://infyspringboard.onwingspan.com/web/en/app/toc/lex_au th_01384200894190387210361_shared/overview	Project on Computer Graphics

Note :

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 02/07/2024

Semester - 3, K Scheme