22320

21819

3 Hours / 70 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:
a) List the binary, octal and hexadecimal numbers for decimal no. 0 to 15 .
b) Define fan-in and fan-out of a gate.
c) Compare between synchronous and asynchronous counter (any two points).
d) State two specification of DAC.
e) Write the gray code to given no. $(\perp \perp 0 \perp)_{2}=$ (?) Gray.
f) Define encoder, write the IC number of IC used as decimal to BCD encoder.
g) Draw the logical symbol of EX-OR and EX-NOR gate.
2. Attempt any THREE of the following:
a) Convert:
(i) $(\mathrm{AD} 92 \cdot \mathrm{BC} \mathrm{A})_{16}=(?)_{10}=(?)_{8}=(?)_{2}$
b) Simplify the following and realize it $Y=A+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A B C+\bar{A} \bar{B}$
c) Explain the flowing characteristics w.r.t logic families:
(i) Noise margin
(ii) Power dissipation
(iii) Figure of merit
(iv) Speed of operation
d) Draw logic diagram of half adder circuit.
3. Attempt any THREE of the following:
a) Draw the circuit of successive approximation type ADC and explain it's working.
b) Describe the operation of R-5 flip-flop using NAND gates only.
c) Give classification of memory and compare RAM and ROM (any four points).
d) State the applications of shift register.
4. Attempt any THREE of the following:
a) Subtract the given number using 2's complement method:
(i) $(\perp \perp 0 \perp \perp)_{2}-(\perp \perp \perp 00)_{2}$
(ii) $(\perp 0 \perp 0)_{2}-(\perp 0 \perp)_{2}$
b) State De-Morgan's theorem and prove any one.
c) Compare between PLA and PAL.
d) Reduce the following expression using K-map and implement it $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(1,3,5,7,8,10,14)$
e) Describe the working of J-K flip- flop and state the race around condition.
5. Attempt any TWO of the following: 12
a) Design BCD to seven segment decoder using IC 7447 with its truth table.
b) Describe the working of 4 bit universal shift register.
c) Design basic logic gates using NAND and NOR gate.
6. Attempt any TWO of the following: 12
a) Design a mod-6 Asynchronous counter with truth-table and logic.
b) Design $\perp: 8$ demultiplexer using 1:4 demultiplexer.
c) Draw the circuit diagram of 4 bit R-2R ladder DAC and obtain its output voltage expression.
