MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter - 2019

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1		Attempt any FIVE of the following:		(10)
	(a) Ans.	Define Hooke's law with expression. Hook's law.	1	
		It states that when a material is loaded within its elastic limit, the stress produced is directly proportional to the strain. $\begin{aligned} & \sigma \alpha \mathrm{e} \\ & \frac{\sigma}{e}=\text { Constant }=E \end{aligned}$	1	2
	(b) Ans.	Write down formula of M-I of quarter circle about its centroidal axes. M.I. of quarter circle $\left(\mathrm{I}_{\mathrm{XX}}\right)=0.055 \mathrm{R}^{4}$	1	
		M.I. of quarter circle $\left(\mathrm{I}_{\mathrm{YY}}\right)=0.055 \mathrm{R}^{4}$	1	2
	(c) Ans.	Define modulus of rigidity and bulk Modulus. Bulk Modulus (K): When a body is subjected to three mutually perpendicular like stresses of same intensity then the ratio of direct stress and the corresponding volumetric strain of the body is constant and is known as Bulk Modulus. Modulus of rigidity (G): It is ratio of shear stress to shear strain, is called as Modulus of Rigidity.	1 1	2

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	(g) Ans.	Give relation between average and maximum shear stress for rectangular and circular cross section. 1. Rectangular Section: $q_{\text {max }}=\frac{3}{2} q_{\text {avg }}$ 2. Circular Section: $\quad q_{\text {max }}=\frac{4}{3} q_{\text {avg }}$	$\mathbf{1}$	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(c)	Calculate the moment of inertia of a L- section about the $X X$ axis passing through the center of gravity for a section as shown in fig. No. 1.		
	Ans.	$\begin{aligned} & \text { Fig. } 1 \\ & a_{1}=150 \times 10=1500 \mathrm{~mm}^{2} \quad y_{1}=\frac{150}{2}=5 \mathrm{~mm} \\ & a_{2}=10 \times 140=1400 \mathrm{~mm}^{2} \quad y_{2}=10+\frac{140}{2}=80 \mathrm{~mm} \\ & \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}}=\frac{(1500 \times 5)+(1400 \times 80)}{1500+1400}=41.21 \mathrm{~mm} \text { from the } \text { base } . \end{aligned}$	1	
		$\begin{aligned} & I_{x x}=I_{x x_{1}}+I_{x x_{2}}=\left(I_{G}+a h^{2}\right)_{1}+\left(I_{G}+a h^{2}\right)_{2} \\ & I_{x x}=\left(\frac{b d^{3}}{12}+a h^{2}\right)_{1}+\left(\frac{b d^{3}}{12}+a h^{2}\right)_{2} \\ & I_{x x}=\left(\frac{150 \times 10^{3}}{12}+\left(1500 \times(41.21-5)^{2}\right)\right)_{1}+\left(\frac{10 \times 140^{3}}{12}+\left(1400 \times(80-41.21)^{2}\right)\right)_{2} \\ & I_{x x}=(1979246.15)_{1}+(4393196.407)_{2} \\ & I_{x x}=6372442.557 \mathrm{~mm}^{4} \end{aligned}$	1 1 1	4
	(d)	Calculate the M-I @ YY axis for following section.		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	$\begin{gathered} \text { (d) } \\ \text { Ans. } \end{gathered}$	i) Calculation of X : $\begin{aligned} & A_{1}=100 \times 10=1000 \mathrm{~mm}^{2} \quad A_{2}=180 \times 8=1440 \mathrm{~mm}^{2} \quad A_{3}=100 \times 10=1000 \mathrm{~mm}^{2} \\ & X_{1}=46+\frac{100}{2}=96 \mathrm{~mm}, \quad X_{2}=46+\frac{8}{2}=50 \mathrm{~mm}, \quad X_{3}=50 \mathrm{~mm}, \\ & X=\frac{A_{1} X_{1}+A_{2} X_{2}+A_{3} X_{3}}{A_{1}+A_{2}+A_{3}}=\frac{(1000 \times 96)+(1440 \times 50)+(1000 \times 50)}{1000+1440+1000}=63.37 \mathrm{~mm} \end{aligned}$ ii) Calculation of I_{xx} : $\begin{aligned} & \text { Here, } \mathrm{h}_{1}=\mathrm{X}_{1}-\mathrm{X}=96-63.37=32.63 \mathrm{~mm} \\ & \quad \mathrm{~h}_{2}=\mathrm{X}-\mathrm{X}_{2}=63.37-50=13.37 \mathrm{~mm} \\ & \quad h_{3}=X-X_{3}=63.37-50=13.37 \mathrm{~mm} \\ & I_{y y}=I_{y y 1}+I_{y y 2}+I_{y y 3} \\ & I_{y y}=\left(I_{G}+\text { hh }^{2}\right)_{1}+\left(I_{G}+\mathrm{Ah}^{2}\right)_{2}+\left(\mathrm{I}_{G}+\mathrm{Ah}^{2}\right)_{3} \\ & I_{y y}=\left(\frac{b d^{3}}{12}+A h^{2}\right)_{1}+\left(\frac{\mathrm{bd}^{3}}{12}+\mathrm{Ah}^{2}\right)_{2}+\left(\frac{\mathrm{bd}^{3}}{12}+\mathrm{Ah}^{2}\right)_{3} \\ & I_{y y}=\left(\frac{10 \times 100^{3}}{12}+1000 \times 32.63^{2}\right)+\left(\frac{180 \times 8^{3}}{12}+1440 \times 13.37^{2}\right)+\left(\frac{10 \times 100^{3}}{12}+1000 \times 13.37^{2}\right) \\ & I_{y y}=3.175 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3		Attempt any THREE of the following :		(12)
	(a)	A steel rod 20 mm in diameter 1.2 m long is heated through 120° C at the same time subjected to a pull ' P ' if the total extension of the rod is 3 mm calculate the magnitude of ' P '. Take $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\mathrm{E}=200 \mathrm{GPa}$.		
	Ans.	Data : $\mathrm{d}=20 \mathrm{~mm}, \mathrm{~L}=1.2 \mathrm{~m}, \mathrm{~T}=120^{\circ} \mathrm{C}$, , $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha_{S}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ Find: $\mathrm{P}=$?		
		$A=\frac{\pi d^{2}}{4}=\frac{\pi \times 20^{2}}{4}=314.16 \mathrm{~mm}^{2}$ i) δL_{1} due to change in temperature. $\begin{aligned} & \delta L_{1}=L \times \alpha \times T \\ & \delta L_{1}=1200 \times 10^{3} \times 12 \times 10^{-6} \times 120 \\ & \delta L_{1}=1.728 \mathrm{~mm} \end{aligned}$	1	
		ii) δL_{2} due to force applied. $\begin{aligned} & \delta L_{2}=\frac{P L}{A E} \\ & \delta L_{2}=\frac{P \times 1200}{314.16 \times 200 \times 10^{3}} \\ & \delta L_{2}=\left(1.91 \times 10^{-5}\right) P \mathrm{~mm} \end{aligned}$	1	
		iii) Total change in length is δL. $\begin{aligned} & \delta L=\delta L_{1}+\delta L_{2} \\ & 3=1.728+\left(1.91 \times 10^{-5}\right) P \\ & P=66598.82 \mathrm{~N} \\ & P=66.60 \mathrm{kN} \end{aligned}$	1	4
	(b) Ans.	A bar having cross-section as given in fig. No. 3 is subjected to a tensile load of 150 kN . Calculate the change in length of each part along with the total change in length if $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{m}$.		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(b) Ans. (c) Ans.	Fig. 3 Data: $\mathrm{P}=150 \mathrm{kN}, \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ Find: $\delta \mathrm{L}$ in each part. $\begin{aligned} & \delta \mathrm{L}=\delta \mathrm{L}_{1}+\delta \mathrm{L}_{2}+\delta \mathrm{L}_{3} \\ & \delta \mathrm{~L}=\left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{1}+\left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{2}+\left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{3} \\ & \delta \mathrm{~L}=\left(\frac{150 \times 10^{3} \times 2 \times 10^{3}}{\frac{\pi}{4} \times 30^{2} \times 2 \times 10^{5}}\right)_{1}+\left(\frac{150 \times 10^{3} \times 4 \times 10^{3}}{\frac{\pi}{4} \times 10^{2} \times 2 \times 10^{5}}\right)_{2}+\left(\frac{150 \times 10^{3} \times 2 \times 10^{3}}{\frac{\pi}{4} \times 45^{2} \times 2 \times 10^{5}}\right)_{3} \\ & \delta \mathrm{~L}=2.1221+38.1972+0.9431 \\ & \delta \mathrm{~L}=41.262 \mathrm{~mm} \end{aligned}$ A reinforced concrete column is $300 \mathrm{~mm} X 300 \mathrm{~mm}$ in section, reinforced with 8 steel bars of 20 mm diameter. The column carries a load of 360 kN . Find the stresses in concrete and steel bars. $\text { Take } \mathrm{E}_{\mathrm{st}}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{E}_{\mathrm{con} \cdot}=1.4 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ Data: $A=300 \times 300 \mathrm{~mm}^{2}, d=20 \mathrm{~mm} \varphi$ No. of steel bar $=8$, $\mathrm{P}=360 \mathrm{kN}$, Est $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Econ. $=1.4 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ Find: $\sigma_{\mathrm{c}}, \sigma_{\mathrm{s}}$, $A_{s}=n\left(\frac{\pi d^{2}}{4}\right)=8\left(\frac{\pi \times 20^{2}}{4}\right)=2513.27 \mathrm{~mm}^{2}$	1 2 1	4

$\begin{gathered} \hline \text { Que. } \\ \text { No. } \\ \hline \end{gathered}$	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(c) (d) Ans.	$\begin{aligned} & A_{c}=A_{g}-A_{s} \\ & A_{c}=300 \times 300-2513.27 \\ & A_{c}=87486.72 \mathrm{~mm}^{2} \\ & \frac{\sigma_{s}}{\sigma_{c}}=m \\ & \frac{2.1 \times 10^{5}}{1.4 \times 10^{4}}=15 \\ & \sigma_{s}=m \times \sigma_{c} \\ & \sigma_{s}=15 \sigma_{c} \\ & P=P_{s}+P_{c} \\ & P=\sigma_{s} A_{s}+\sigma_{c} A_{c} \\ & 360 \times 10^{3}=\left(15 \sigma_{c}\right) 2513.27+\sigma_{c} 87486.72 \\ & 360 \times 10^{3}=(37699.11+87486.72) \sigma_{c} \\ & \sigma_{c}=2.876 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{s}=15 \sigma_{c} \\ & \sigma_{s}=15 \times 2.876 \\ & \sigma_{s}=43.136 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ A Circular bar of diameter 25 mm and 3.5 m long is subjected to a tensile load of 40 kN . Shows an elongation of 60 mm . Determine stress, strain and modulus of elasticity. Data: $\mathrm{d}=25 \mathrm{~mm}, \mathrm{~L}=3.5 \mathrm{~m}, \mathrm{P}=40 \mathrm{kN}, \delta \mathrm{L}=60 \mathrm{~mm}$ Find: $\sigma, \mathrm{e}, \mathrm{E}=$? $\begin{aligned} & \sigma=\frac{P}{A}=\frac{40 \times 10^{3}}{\frac{\pi}{4} \times 25^{2}}=81.487 \mathrm{~N} / \mathrm{mm}^{2} \\ & e=\frac{\delta L}{L}=\frac{60}{3.5 \times 10^{3}}=0.01714 \\ & E=\frac{\sigma}{e}=\frac{81.487}{0.01714}=4753.43 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1 1 1 1 1 1 2	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4		Attempt any THREE of the following :		(12)
	(a)	For a given material $E=110 \mathrm{GPa}, \mathrm{G}=43 \mathrm{GPa}$ find K and μ. Data: $\mathrm{E}=110 \mathrm{GPa}, \mathrm{G}=43 \mathrm{GPa}$ Find: $K=$? , $\mu=$?		
	Ans.	$\begin{aligned} & E=2 G(1+\mu) \\ & 110=2 \times 43 \times(1+\mu) \\ & \mu=0.279 \end{aligned}$	1 1	
		$\begin{aligned} & E=2 K(1-2 \mu) \\ & 110=2 K(1-2 \times 0.279) \\ & K=82.982 G P a \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	4
	(b)	In a biaxial stress system, the stresses along the two directions are the $\sigma_{\mathrm{x}}=50 \mathrm{~N} / \mathrm{mm}^{2}$ and $\sigma_{\mathrm{y}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ both tensile. Determine the strains along these two directions. $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.3$. Data: $\sigma x=50 \mathrm{~N} / \mathrm{mm}^{2}, \sigma y=30 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{~b}=30 \mathrm{~mm}, \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, $\mu=0.3$		
		Find: $\mathrm{e}_{\mathrm{x}}, \mathrm{e}_{\mathrm{y}}=$?		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(d)	Draw SF and BM diagram for the cantilever beam as shown in fig. No. 4.		
	Ans.	I) Reaction Calculation: $\begin{aligned} & \sum \mathrm{Fy}=0 \\ & \mathrm{RA}=20+20+10 \times 3=70 \mathrm{kN} \end{aligned}$		
		II) SF Calculation: $\begin{aligned} & \mathrm{A}=+70 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{L}}=+70-10 \times 1=60 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{R}}=+60-20=+40 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{L}}=+40-20=+20 \mathrm{kN} \\ & \mathrm{C}=+20-20=0 \mathrm{kN} \quad(\mathrm{ok}) \end{aligned}$	1	
		III) BM Calculation: $\begin{aligned} & C=0 \quad(B \text { is Free end }) \\ & B=-20 \times 2-(10 \times 2 \times 1)=-60 \mathrm{kN}-\mathrm{m} \\ & A=-20 \times 3-20 \times 1-(10 \times 3 \times 1.5)=-125 \mathrm{kN}-\mathrm{m} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(a) Ans.	Attempt any TWO of the following : Draw shear force and bending moment for beam as shown in Fig. No. 5 Fig. 5 (Note: If students assume any other value of point load and try to attempt should be considered.) I. Reaction Calculation: $\begin{aligned} & \sum M_{A}=0 \\ & R_{B} \times 4.5=(20 \times 1.5) \times \frac{1.5}{2}+(30 \times 1.5)+(60 \times 3)+\left[(15 \times 1.5) \times\left(3+\frac{1.5}{2}\right)\right] \\ & R_{B}=\frac{22.5+45+180+84.375}{4.5} \\ & R_{B}=73.75 \mathrm{kN} \\ & \sum F_{Y}=0 \\ & R_{A}+R_{B}=(20 \times 1.5)+30+60+(15 \times 1.5) \\ & R_{A}+R_{B}=30+30+60+22.5-73.75 \\ & R_{A}=68.75 \mathrm{kN} \end{aligned}$ II. SF Calculation: $\begin{aligned} \text { SF at } A & =+68.75 \mathrm{kN} \\ C_{L} & =+68.75-(20 \times 1.5)=+38.75 \mathrm{kN} \\ C_{R} & =+38.75-30=+8.75 \mathrm{kN} \\ D_{L} & =+8.75 \mathrm{kN} \\ D_{R} & =+8.75-60=-51.25 \mathrm{kN} \\ B_{L} & =-51.25-(15 \times 1.5)=-73.75 \mathrm{kN} \\ B & =-73.75-73.75=0 \quad(\square \mathrm{ok}) \end{aligned}$	1	(12)

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(b) Ans.	Draw S.F. and B.M. diagram for overhanging beam as shown in fig. No. 6. Fig. 6 I. Support Reactions: $\begin{aligned} & \Sigma M_{A}=0 \\ & R_{B} \times 4=(30 \times 5) \times 2.5+50 \times 5 \\ & R_{B}=156.25 \mathrm{kN} \\ & \Sigma F_{Y}=0 \\ & R_{A}+R_{B}=(30 \times 5)+50 \\ & R_{A}+156.25=(30 \times 5)+50 \\ & R_{A}=43.75 \mathrm{kN} \end{aligned}$ II. SF calculations : $\begin{aligned} S F \text { at } A & =+43.75 \mathrm{kN} \\ B_{L} & =+43.75-(30 \times 40)=-76.25 \mathrm{kN} \\ B_{R} & =-76.25+156.25=+80 \mathrm{kN} \\ C_{L} & =+80-30 \times 1=+50 \mathrm{kN} \\ C & =+50-50=0 \quad(\mathrm{ok}) \end{aligned}$ III. BM calculations: $B M$ at A and $C=0 .(\because$ Supports are simple $)$ $B=-50 \times 1-30 \times 1 \times \frac{1}{2}=-65 \mathrm{kN}-\mathrm{m}$ IV. To calcuate Maximum Bending Moment $\begin{aligned} & \quad S F \text { at } x=0, \\ & \therefore 43.75-30 \times x=0 \\ & \therefore x=1.458 \mathrm{~m} \text { from } A \\ & B M_{\max }=43.75 \times 1.458-30 \times \frac{1.458^{2}}{2} \\ & B M_{\max }=31.90 \mathrm{kN}-\mathrm{m} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(b)	V. To calculate point of contraflexure At distan ce $X B M=0$ $43.75 x-30 \times \frac{x^{2}}{2}$ $x=2.92 m$ from sup port A	1 1	6

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(c)	Draw S.F. and B.M. diagram for beam as shown in fig. No. 7		
	Ans.	I) Reaction Calculation: $\begin{aligned} & \sum \mathrm{M}_{\mathrm{A}}=0 \\ & \mathrm{RB} \times 4=100 \times 1.5+70 \\ & \mathrm{RB}=55 \mathrm{kN} \end{aligned}$		
		$\begin{aligned} & \sum \mathrm{Fy}=0 \\ & \mathrm{RA}+\mathrm{RB}=100 \\ & \mathrm{RA}=45 \mathrm{kN} \end{aligned}$	1	
		II) SF Calculation: $\begin{aligned} \mathrm{SF} \text { at } \mathrm{A} & =+45 \mathrm{kN} \\ \mathrm{C}_{\mathrm{L}} & =+45 \mathrm{kN} \\ \mathrm{C}_{\mathrm{R}} & =+45-100=-55 \mathrm{kN} \\ \mathrm{~B}_{\mathrm{L}} & =-55 \mathrm{kN} \\ \mathrm{~B}_{\mathrm{L}} & =-55+55=0 \quad(\square \mathrm{ok}) \end{aligned}$	1	
		III) BM Calculation: BM at A and $\mathrm{B}=0$ (\square Support A and B is simple) $\begin{aligned} & C=+45 \times 1.5=+67.5 \mathrm{kN}-\mathrm{m} \\ & \mathrm{D}_{\mathrm{L}}=+45 \times 2.5-100 \times 1=+12.5 \mathrm{kN}-\mathrm{m} \\ & \mathrm{D}_{\mathrm{R}}=+45 \times 2.5-100 \times 1+70=+82.5 \mathrm{kN}-\mathrm{m} \end{aligned}$ OR $\mathrm{D}_{\mathrm{R}}=+55 \times 1.5=+82.5 \mathrm{kN}-\mathrm{m}$	1	

Model Answer: Winter - 2019

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(a) (ii) Ans.	A simply supported beam has span 7 m carries a point load of 50 kN at the center of the beam. Calculate the modulus of section if bending stress is not to exceed 140 Mpa. With distribution diagram of stress. Given : $L=7 m, W=50 \mathrm{kN}, \quad \sigma=140 \mathrm{MPa}$ $M=\frac{W L}{4}=\frac{50 \times 7}{4}=87.5 \mathrm{kN}-\mathrm{m}=87.5 \times 10^{6} \mathrm{~N}-\mathrm{mm}$ Flexural Equation : $\begin{aligned} & \frac{M}{I}=\frac{\sigma}{y} \\ & \frac{M}{\sigma}=\left(\frac{I}{y}\right)=Z \\ & Z=\frac{M}{\sigma}=\frac{87.5 \times 10^{6}}{140}=6.25 \times 10^{5} \mathrm{~mm}^{3} \end{aligned}$	1	
		Bending Stress Distribution Diagram	1	3

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(b) Ans.	A cantilever is 2 m long and is subjected to an udl of $5 \mathrm{kN} / \mathrm{m}$. The c / s of a cantilever is a I-section as shown in fig. No. 8. Determine the maximum tensile and compressive stress developed and their position, showing stress distribution diagram. Fig. 8 i) Calculation of \bar{Y} : $\begin{aligned} & A_{1}=200 \times 10=2000 \mathrm{~mm}^{2} \\ & A_{2}=10 \times 90=900 \mathrm{~mm}^{2} \\ & A_{3}=150 \times 10=1500 \mathrm{~mm}^{2} \\ & Y_{1}=\frac{10}{2}=5 \mathrm{~mm} \\ & Y_{2}=10+\frac{90}{2}=55 \mathrm{~mm} \\ & Y_{3}=10+90+\frac{10}{2}=105 \mathrm{~mm} \\ & \dot{Y}=\frac{A_{1} Y_{1}+A_{2} Y_{2}+A_{3} Y_{3}}{A_{1}+A_{2}+A_{3}} \\ & \dot{Y}=\frac{(2000 \times 5)+(900 \times 55)+(1500 \times 105)}{2000+900+1500} \\ & \dot{Y}=49.32 \mathrm{~mm} \\ & Y_{C}=49.32 \mathrm{~mm} \\ & Y_{T}=110-49.32=60.68 \mathrm{~mm} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(c)	A T-section beam having flange 180 mm wide and 20 mm thick and web 150 mm long and 20 mm thick carries a udl of $80 \mathrm{kN} / \mathrm{m}$ over an effective span of 8 m . Calculate the maximum bending stress. $\begin{aligned} & \mathrm{a}_{1}=20 \times 150=3000 \mathrm{~mm}^{2} \quad \mathrm{y}_{1}=\frac{150}{2}=75 \mathrm{~mm} \\ & \mathrm{a}_{2}=180 \times 20=3600 \mathrm{~mm}^{2} \quad y_{2}=150+\frac{20}{2}=160 \mathrm{~mm} \\ & \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}}=\frac{(3000 \times 75)+(3600 \times 160)}{3000+3600}=121.36 \mathrm{~mm} \text { from the base. } \\ & y_{c}=48.64 \mathrm{~mm}, \quad y_{t}=121.36 \mathrm{~mm} \end{aligned}$ $\begin{aligned} & \mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{xx}}=\left(I G+a h^{2}\right)_{1}+\left(I G+a h^{2}\right)_{2} \\ & \mathrm{I}_{\mathrm{xx}}=\left(\frac{b d^{3}}{12}+a h^{2}\right)_{1}+\left(\frac{b d^{3}}{12}+a h^{2}\right)_{2} \\ & \mathrm{I}_{\mathrm{xx}}=\left(\frac{20 \times 150^{3}}{12}+\left(3000 \times(121.75-75)^{2}\right)\right)_{1}+\left(\frac{180 \times 20^{3}}{12}+\left(3600 \times(48.64-10)^{2}\right)\right)_{2} \\ & \mathrm{I}_{\mathrm{xx}}=(12072748.8)_{1}+(5494978.56)_{2} \\ & I_{\mathrm{xx}}=17567727.36 \mathrm{~mm}^{4}=17.568 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ Maximum Bending moment : $(M)=\frac{w L^{2}}{8}=\frac{80 \times 8^{2}}{8}=640 \mathrm{kN}-\mathrm{m}=640 \times 10^{6} \mathrm{~N}-\mathrm{mm}$ Maximum stress : $\begin{aligned} & \sigma_{c}=\frac{M}{I} \times y_{t}=\frac{640 \times 10^{6}}{17.568 \times 10^{6}} \times 48.64=1771.976 \mathrm{~N} / \mathrm{mm}^{2}(C) \\ & \sigma_{t}=\frac{M}{I} \times y_{c}=\frac{640 \times 10^{6}}{17.568 \times 10^{6}} \times 121.36=4421.198 \mathrm{~N} / \mathrm{mm}^{2}(T) \\ & \sigma_{t}=\sigma_{\max }=4421.198 \mathrm{~N} / \mathrm{mm}^{2}(T) \end{aligned}$ (Note- If students assume a cantilever type of beam and try to attempt should be considered).	1	6

