MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 – 2005 Certified)

WINTER -2019 EXAMINATION

Subject code: 22301

Model Answer

Important Instructions to the Examiners:

- 1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidates answer and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que No	Question and Model Answers	Marks
1.	Attempt any <u>FIVE</u> of the following:	10
a)	State two advantages of plane table surveying	
Ans:	 1.it is most rapid method of surveying. 2. it is suitable for magnetic areas. 3.The map can be prepared easily ,and does not require greater skill. 4.Irregular objects can be represented accurately. 5.There is no possibility of overlooking any important object. 6. It is less costly. 7 The check lines detects the errors of measurement and plotting on field itself. 	1M each (any two)
b)	Define Swinging & Transiting	
Ans:	Swinging: It is the process of turning the telescope in horizontal plane about its vertical axis. Transiting ;It is the process of turning the telescope through 180° in a vertical plane about its horizontal axis	1M each
c)	Define Latitude and Departure.	
Ans:	 Latitude : The projection of survey line parallel to meridian is called latitude. OR Projection of survey line parallel to N-S direction is called latitude. Departure: The projection of survey line perpendicular to meridian is called departure. OR Projection of survey line parallel to E-W direction is called departure. 	1M each

d)	State the function of Anallatic lens	
Ans:	The function of anallatic lens is to make additive constant zero i.e.(f+d)=0 It simplifies the calculation.	2M
e)	Define degree of curve.	
Ans:	The angle subtended at the centre of the circle by a chord of standard length of 30m is known as degree of curve.	2M
f)	List two uses of EDM.	
Ans:	 It is useful for measuring the distances that are difficult to access. It is useful in topographical survey. Measurement of base line in triangulation survey can be carried out speedily and accurately. Measurement of distances in difficult work sites such as construction of gravity dams. It is useful in fixing alignment of road, railways, canals etc. 	1M each (any two)
g)	Name two software for GPS.	
Ans:	Softwares for GPS 1).GPSWOX 2) iGO 3) HERE 4)Navigon 5)Navman 6)EasyGPS 7) Caliper	2M for any two
2.	Attempt any <u>THREE</u> of the following	12
a)	Describe any one method of orientation of plane table surveying	
	This method is accurate and is always preferred. Procedure: 1.Suppose A and B are two stations. The plane table is set up over A. The table is leveled by spirit level and centerd over station A so that point 'a' is just over station A. The north line is marked on the right hand top corner of the sheet by trough compass. 2. With alidade touching a, the ranging rod at B is bisected and a ray is drawn. The distance AB is measured and plotted to any suitable scale .so, the point b represents Station B. 3. The table is shifted and set up over B. It is leveled and centered so that 'b' is just over B. Now the alidade is placed along the line ba, and the ranging rod at A is bisected by turning the table clockwise or anticlockwise . At this time the centering may be disturbed, and should be adjusted immediately if required. When the centering ,leveling and bisection of ranging rod at A are perfect ,then the orientation is said to be perfect.	2M exp 2M fig.

	B)Leveling up of theodolite:								
	1) Turn the theodolite about its vertical axis until the plate level is parallel to any pair of leveling screws.								
	2) Bring the bubble to the centre of its run by turning both foot screws uniformly. By using thumb and forefingers, move the foot screws either towards each other or away								
	from other.								
	3) Turn the instrument through 90° so that the bubble line will be at right angle to its previous position. Now, move only the third foot screw either in or out till the bubble is brought to the centre of its run								
	4) Repeat the process until finally the plate bubble is exactly centered in both the								
	positions. 5) Now rotate the theodolite about the vertical axis through 360 ⁰ . The bubble will remain central provided it is in correct adjustment. The vertical axis is thus made truly vertical.								
	The object of focusing the eye piece is to make the cross hairs on diaphragm distinct and clear. To do this, direct the telescope towards the sky or hold a sheet of white paper in front of the object glass, and move the eye piece circumferentially or in or out until the cross hairs are seen sharp and black.	1M							
	The object of focusing the glass is to bring the image of the object formed by the object glass exactly in the plane of cross hairs. If not done accurately, there will be an apparent movement of the image relatively to the cross hairs when the observer moves eye up and down. This effect is known as parallax. The parallax can be removed by the sharp								
	focusing until the image appears sharp and clear.	1M							
c)	Explain the principle of techeometry with the help of a neat sketch.								
Ans:	Principle of tacheometry is based on principle of similar triangle in which corresponding sides & altitudes are proportional The ratio of distance of base from apex and length of base is always constant.								
	In fig. Oa ₁ a ₂ , Ob ₁ b ₂ , Oc ₁ c ₂ are all isosceles triangles where D ₁ , D ₂ , D ₃ are the distances of bases from the apices (distances of staff stations from instrumnt stations) and S ₁ , S ₂ , S ₃ are the lengths of the bases also called staff intercepts. According to stated principle. D ₁ /S ₁ = D ₂ /S ₂ =D ₃ /S ₃ =f/i=Constant Where f=focal length of objective and i =stadia intercept								
	a ₂ b ₂ c ₂								
	S1 S2 S3								
	a 1 b 1 c 1	1M							
		sketch							
d)	Draw a simple circular curve and show the following on it								
	(i) Forward Tangent (ii) Long Chord (iii) Deflection angle (iv) Apex distance								
a)		2M							

	B B B B C is Known as forward tangents. T1 DT2 is known as long chord. The angle Ø is known as deflection angle.	sketch 2M for notati on)
	BE is known as Apex distance.	
Q.3	Attempt any <u>THREE</u> of the following:	12M
a)	Describe the procedure of measurement of horizontal angle by repetition method.	
Ans:	Procedure: 1 Suppose the angle AOB is to be measured by the repetition process. The theodolite is set over O. The instrument is centered and levelled properly. Vernier A is set at 0 ⁰ and vernier is at 180 ⁰ 2. The lower plate is loosened. By turning the telescope the ranging rod at A is perfectly bisected with the help of lower clamp and tangent screw. Here the initial reading of vernier A is 0 ⁰ 3. The upper clamp is loosened and telescope is turned clockwise to perfectly bisect ranging rod at B by using upper clamp and tangent screw. Suppose the reading on vernier A is 30 ⁰ 4. The lower clamp is loosened and telescope turned to exactly bisect the ranging rod at A by lower plate clamp and tangent screw. Here the initial reading is 30 ⁰ for second observation. 5. The upper plate is loosened and the telescope is turned to exactly bisect the ranging rod at B by using upper clamp and tangent screwLet the reading on vernier A is 60 ⁰ 6 The procedure is repeated for one more time. 7. The face of the instrument is changed and the previous procedure is followed. 8 The mean of the two angles obtained from two faces gives the actual angle AOB.	3M Pro.
	0	1M Fig.

lock-on to satellites within 1-2 min of powering up.

B. Antenna setup.

All tribrachs used on a project should be calibrated and adjusted prior to beginning each project. Dual use of both optical plummets and standard plumb bobs is strongly recommended since centering errors represent a major error source in all survey work, not just GPS surveying.

C. Height of instrument measurements.

Height of instrument (HI) refers to the correct measurement of the distance of the GPS antenna above the reference monument over which it has been placed. HI measurements will be made both before and after each observation session. The HI will be made from the monument to a standard reference point on the antenna .These standard reference point for each antenna will be established prior to the beginning of the observation so all observers will be measuring to the same point. All HI measurements will be made in meters. HI measurements shall be determined to the nearest millimeter in metric units. It should be noted whether the HI is vertical or diagonal.

D. Field GPS observation recording procedures.

Field recording books, log sheet, or log forms will be completed for each station and/or session. Any acceptable recording media may be used. For archiving purpose, standard bound field survey books are preferred. However, USACE Commands may require specific recording sheet/forms to be used in lieu of a survey book. The amount of record keeping detail will be project-dependent. Low-order topographic mapping points need not have as much descriptive information as would have for permanently marked primary control points. The following typical data may be included on these field log records:

1) Project, construction contract, observer(s) name(s), and/or contractor firm and contract number.

2) Station designation.

3) Station file number.

4) Date, weather conditions, etc.

5) Time, start/stop session (local and UTC).

6) Receiver, antenna, data recording unit, and tribrach make, model, and serial numbers.

7) Antenna height: vertical or diagonal measure in inches (or feet) and meters.

8) Space vehicle designations (satellite number).

9) Sketch of station location.

10) Approximate geodetic location and elevation.

	11) Pro	blems encour	tered	1						
	F Field	d processing	and	verificat	ion					
	It is str	congly recom	nond	led that (CDS data pr	ocassi	ng and verific	nation be performe	d in the	
	field w	bara applicat	nene	This is t	ji S uata pi	0000551	roblom that	may aviat which		
	neid w		ле.			any p	broblem that	may exist which	can be	
	correcte	ed before retu	rning	g from th	e field.					
	Note: A	Above procedu	ıre is	general	procedure. /	Actual	co-ordinate m	easurement proced	lure will	
		be as	s per	make an	d model of	GPS. (Give credit acc	cordingly.		
Q.4	Attemp	ot any <u>THRE</u>	<u>E</u> of	the follo	owing:					12M
a)	Compare radiation and intersection methods of plane table surveying on any two parameters.									
Ans:		Radiati	ion n	nethod			Interse	ction method		
	1. It r	equires the p	lane	table to	occupy a	1. Tl	his method re	equires setting the	table	
	2. Orie	entation table	is no	ot require	d.	2. Oi	ientation is e	ssential and can be	e done	
		1 1				b	y back sightin	lg.		
	3. To	conduct the le is kept at	surv	ey of an nyenient	area, the station A	3. Tv tł	vo station A a	a full view of th	so that	2 M
	con	nmanding a f	full v	view of t	he area to	o to be surveyed.				each (anv
	be s	surveyed.	<u></u>	na draw	from the	ha d in this mathead distance of hears land only				two)
	stat	tion to the ob	ays a	s, and th	e distance	is measured. Distance of object from				
	from	m the static	on t	o the c	bject are	re station is not measured				
	me sca	asured and p le along respe	olotte ective	ed to an	y suitable					
	5 This	method is su	itable	e when p	oints to be	5 T	his method	is suitable for lo	cating	
	plot	tted are withir	n acc	essible f	rom single	ir	accessible po	bints by the inters	ection	
	stat	tion.				o	ations.	wn from two instru	iments	
b)	Fellow	ing and the la	nath	a and ha	onings of s		d there a			
U)	FOIIOW	ing are the le	ingu	is and De	arings of a	l close	u traverse Al	DCDA.		
				Line	Length	(m)	Bearing			
				AB	258.0)	30 ⁰			
				BC	321.0)	140 ⁰			
				CD	180.0)	210 ⁰	-		
				DA	?		?			
	Calcula	ate the length	and	l bearing	g of the Lir	e DA.		2		
Ans:	For clos	sed traverse Σ	L = (), 2D = 0				1	1	
	Line	Length(m)	Bea	aring	Reduced		Latitude	Departure		
					Bearing (6))	$= I^* \cos \theta$	$=$ I*sin θ]	
1	1									1

	AB	258.0		30^{0}	N 30 ⁰	E	+223.43	+129.00		
	BC	321.0		140^{0}	S 40 ⁰	E	-245.90	+206.33		
	CD	180.0		210^{0}	S 30 ⁰	W	-155.88	-90.00		1M
	DA	?		?	θ		L	D		
	$\Sigma L = 0$									
	Therefor	re, +223.4	3-245.9	0-155.8	8 + L = 0					
	L = 178	.35								¹∕₂M
	$\Sigma D = 0$									
	Therefor	re, +129+2	206.33-9	90+D = 0	0					
	D = -24	5.33								
	$\tan\theta = D$	/L= 245.33	3/178.35							¹∕₂M
	$\theta = 53^0 5$	59'0 .95"								
	Since lat	itude is +v	ve and D	eparture	is –ve ,	hence line	DA lies in NW	Quadrant		
	Bearing	of line DA	A= N 53	⁰ 59'0 .9	5"W					
	Length o	of line DA	$= \sqrt{(L)^2}$	$^{2}+(D)^{2})$						1M
			=√((17	$(8.35)^2 + (100)^2$	(245.33	$)^{2})$				
	Length	of line DA	L = 303.	30 m.						
										1M
c)	Followi	ng are th	e corre	cted lat	titudes	and depar	rtures of a cl	osed traverse.	Find the	
	indepen	dent co-o	ordinate	es of the	points	of travers	e.			
				Side	La	titude	Departure			
			·	AB	+	225.5	+120.5			
				BC	-2	245.0	+210.0			
				CD	-	150.5	-110.5			
			·	DA	+	170.0	-220.0			
Ans:	For inde	pendent c	oordina	tes:						
		Lino	Static		titudo	Dopartur	Indepande	ent co-ordinates		
			Static			Departur	Northing	Easting		1/
		AB	A	+2	225.5	+120.5	1000	1000 assumed		½ M each
		BC	В	-2	245.0	+210.0	1225.5	1120.5		cal.
			_							for

1		CD	C	-150.5	-110.5	980.5	133	30.5		Ν
		DA	D	+170.0	-220.0	830	122	20.0		& E
		Check				1000	1.00			
		AB	A			1000	100	0.0		
	Assume	north co-	ordinate of A	=1000						
	Add nor	thing of B	=225.5							
	North co	o-ordinate	of B =1225.5	5						
	Deduct	southing o	of C =245.0							
	North co	o-ordinate	of C =980.5							
	Deduct	southing o	of D =150.5							
	North co		of $D = 830$							
	Add nor	thing of A	=1/0	(abaak ak)						
		Fact Co	ordinate of A							
		ting of $B=$	120 5	-1000						
	Fast Co	-ordinate (of B=1120.5							
	Add eas	ting of C=	210.0							
	East Co	-ordinate o	of C=1330.5							
	deduct v	vesting of	D=110.5							
	East Co	-ordinate o	of D=1220							
	Deduct	westing of	A=220							
	East Co	-ordinate o	of A=1000 (c	heck ok)						
	Note:	Students n	nay assume	different N and	d E co-ordin	ates of A.F.	inal check	sould tall	ly with	
				assumed	l co-ordinate	S.				
d)	Followi	ng observ	vation were	taken to dete	ermine the	<u>constants</u>	of tachor	neter.	1	
		Station	Staff	Horizanta distance	d vertica	l angle	Hair Ro	eadings		
			Station	(m)		-	Lower	Unner	-	
	-	Δ	R	51 430	60	30'	0 900	1 420	-	
		A	D	51.450		50	0.700	1.420		
		Α	С	18.065	2 ⁰ 2	20'	1.140	1.320		
	Determ	ine the co	onstants.							
Ans:										
Ans:	Horizor	ntal Distan	nce							
Ans:	Horizor X= f/i S	tal Distan $\cos^2 \theta + ($	ice (f+c) cos θ	2 0	0					
Ans:	Horizor X= f/i S 51.430	tal Distan $\cos^2 \theta + (\theta + 1)$ = f/i (1.42	$f(f+c) \cos \theta$ ($(f+c) \cos \theta$ ($(f+c) \cos \theta$) ($(f+c) \sin \theta$) ($($	$6^2 6^0 30' + (f+c)$) cos 6 ⁰ 30'					
Ans:	Horizor X= f/i S 51.430 51.430	tal Distan $\cos^2 \theta + (6)$ = f/i (1.42) = 0.520 f/2	nce (f+c) cos θ 0-0.900) cos i + 0.994(f+c	$6^2 6^0 30' + (f+c)$) cos 6 ⁰ 30' I	Equation (1	I)			
Ans:	Horizor X= f/i S 51.430 51.430 X= f/i S	tal Distan $\cos^2 \theta + (\theta + \theta)$ = f/i (1.42 = 0.520 f/2 $\cos^2 \theta + (\theta + \theta)$	nce (f+c) cos θ 0-0.900) cos i + 0.994(f+c (f+c) cos θ	$s^2 6^0 30' + (f+c)$) cos 6 ⁰ 30' 1	Equation (I	[)			
Ans:	Horizor X= f/i S 51.430 51.430 X= f/i S 18.065=	tal Distan $\cos^2 \theta + (6)$ = f/i (1.42) = 0.520 f/2 $\cos^2 \theta + (6)$ = f/i (1.32)	free $(f+c) \cos \theta$ $(f+c) \cos \theta$ i + 0.994(f+c) $(f+c) \cos \theta$ $(f+c) \cos \theta$ $(f+c) \cos \theta$	$s^2 6^0 30' + (f+c)$ s ² 2 ⁰ 20' + (f+c)) cos 6 ⁰ 30' I c) cos 2 ⁰ 20'	Equation (I	[)			
Ans:	Horizor X= f/i S 51.430 51.430 X= f/i S 18.065= 18.065	tal Distan $\cos^2 \theta + (6)$ = f/i (1.42) = 0.520 f/2 $\cos^2 \theta + (6)$ = f/i (1.32) = 0.180 f/2	free $(f+c) \cos \theta$ $(0-0.900) \cos \theta$ i + 0.994(f+c) $(f+c) \cos \theta$ $(0-1.140) \cos \theta$ i + 0.999(f+c)	$s^{2} 6^{0} 30' + (f+c)$ $s^{2} 2^{0} 20' + (f+c)$) cos 6 ⁰ 30' I c) cos 2 ⁰ 20'	Equation (1 Equation (1	I) [I]			
Ans:	Horizor X= f/i S 51.430 X= f/i S 18.065= 18.065 Divide 1 08.004	tal Distan $\cos^2 \theta + (6)^2 = 1000$ = 1000000000000000000000000000000000000	free $(f+c) \cos \theta$ $(0-0.900) \cos \theta$ i + 0.994(f+c) $(f+c) \cos \theta$ $(0-1.140) \cos \theta$ i + 0.999(f+c) (I) by 0.520	$s^{2} 6^{0} 30' + (f+c)$ $s^{2} 2^{0} 20' + (f+c)$ and Equation) cos 6 ⁰ 30' 1 c) cos 2 ⁰ 20' 1 a (II) by 0.18	Equation (1 Equation (1 60	D) (II)			
Ans:	Horizor X= f/i S 51.430 X= f/i S 18.065 18.065 Divide 1 98.904=	tal Distance $\cos^2 \theta + (6) = \frac{1}{2} + \frac{1}{2$	$\frac{(f+c) \cos \theta}{(0-0.900) \cos \theta}$ i + 0.994(f+c) (f+c) cos θ (0-1.140) co i + 0.999(f+c) (I) by 0.520 (I) by 0.520	$s^{2} 6^{0} 30' + (f+c)$ $s^{2} 2^{0} 20' + (f+c)$ and Equation) cos 6 ⁰ 30' 1 c) cos 2 ⁰ 20' 1 a (II) by 0.18 . Equation	Equation () Equation () 80 (III)	[) [])			
Ans:	Horizor X= f/i S 51.430 51.430 X= f/i S 18.065 18.065 18.065 Divide I 98.904= 100.360 Subtrace	tal Distan $\cos^2 \theta + (6)^2 = 10^{-2} + (6)^2 + (6)^2 + (6)^2 = 10^{-2} + (6)^2 + (6)^$	$f(f+c) \cos \theta$ $(f+c) \cos \theta$ $(i + 0.994(f+c)$ $(f+c) \cos \theta$ $(i + 0.999(f+c)$ $(i + 0.999(f+c)$ $(i) by 0.520$ $(1) by 0.520$ $(i + 0.550)$ $(iii) from E$	$s^{2} 6^{0} 30' + (f+c)$ $s^{2} 2^{0} 20' + (f+c)$ and Equation) cos 6 ⁰ 30' 1 c) cos 2 ⁰ 20' 1 (II) by 0.18 . Equation Equation	Equation (1 Equation (1 80 (III) n (IV)	I) II)			

-98.904=-7/h -1.931(16+c) 1.456 3.639(4+c) (f+c) = 0.400 Put this value in Equation (III) 98.904=7/h + (0.764) 7/h = 0.8140 Constants of tacheometrer are: 1) Additive constants (f+c) = 0.400 2) Multiplying constants f/h = 98.140 Note: Marking scheme, Eq1=1M, Eq2=1M, Solving equilions to correct answers =2M Note: Students may follow different procedure to solve equations: - e) Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m. - Ans: A versed sine or ordinate at center of long chord - 00 = 180 - 177.48 - - 00 = 2.517 m IM - The ordinates at various distances 10, 20,30 etc are worked out by the formula. - 0x = $\sqrt{(R^2-(L/2)^2)}$ - - 0y ₁₀ = 179.72 - 177.483 - - 0y ₁₀ = 179.72 - 177.483 - - 0y ₁₀ = $\sqrt{180^2-20^2 - (180 - 2.517)}$ - //2M 0y ₁₀ = $\sqrt{180^2-30^2 - (180 - 2.517)}$ /2M - 0y ₁₀ = $\sqrt{180^2-30^2 - (180 - 2.517)}$ - - 0y ₁₀ = $180^2-30^2 - (180 - 2.5$		100.360 = f/i + 5.550(f+c)	
1.456 = 3.639(f+c) (f+c) = 0.400 Put this value in Equation (III) 98.904= f_1^+ (0.00) x (1.911) 98.904= f_1^+ (0.020) x (1.911) 98.904= f_1^+ (0.020) x (1.911) 98.904= f_1^+ (0.020) x (1.911) 98.904= f_1^+ (0.200) x (1.911) 98.904= f_1^+ (0.200) x (1.911) 98.904= f_1^+ (0.200) x (1.911) 98.904= f_1^+ (0.200) x (1.911) 98.904= f_1^+ (0.200) x (1.911) 98.904= f_1^+ (0.200) x (1.911) 98.904= f_1^+ (0.200) x (1.911) Note2: Students may follow different procedure to solve equations. respective to the theorem procedure to solve equations. e) Calculate the ordinates from long chord to solve equations. respective to the theorem procedure to solve equations. Ans: A versed sine or ordinate at center of long chord 1M $O_0 = R \cdot \sqrt{(R^2 - (1/2)^2)}$ 1M $O_0 = 180 \cdot 177.48$ 00 = 2.517 m 1M $O = 2.517$ m 1M 1M The ordinates at various distances 10, 20,30 etc are worked out by the formula. $O_x = \sqrt{(R^2 - X^2)} - (R \cdot O_0)$ 920 $O_{10} = (180^2 \cdot 10^2) - (180 - 2.517)$ 92M 920 = 177.483 920 = 178.88 - 177.483 920 = 178.88 - 177.483 920 = 178.88 - 177.483 920 = 178.483 - 177.483 920 = 178.483 - 177.483 920 = 1		-98.904 = -f/i - 1.911(f+c)	
Itel = 10.000Put this value in Equation (III)98.904= ffi + (0.400) × (1.911)98.904= ffi + (0.764)ffi= 98.140Constants of tacheometrer are:1) Additive constants (f+c) = 0.4002) Multiplying constants (f+c) = 0.4003) Multiplying constants (f+c) = 0.4002) Multiplying constants (f+c) = 0.4003) Multiplying constants (f+c) = 0.4004) Note2: Students may follow different procedure to solve equations.c)Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m.Ans:A versed sine or ordinate at center of long chord $O_0 = R \cdot \sqrt{R^2 - (L/2)^2}$ $O_0 = 180 - \sqrt{(180)^2 - (60/2)^2}$ $O0 = 2.517 m$ The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{R^2 - X^2} - (R - O_0)$ $O_{10} = \sqrt{(180^2 - 10^2) - (180 - 2.517)}$ $O_{10} = 179.72 - 177.483$ $O_{10} = \sqrt{180^2 - 20^2 - (180 - 2.517)}$ $O_{20} = 178.88 - 177.483$ $O_{20} = 179.402 m$ $O_{30} = \sqrt{180^2 - 30^2 - (180 - 2.517)}$ $O_{30} = \sqrt{180^2 - 30^2 - (180 - 2.517)}$ V_{3M} $O_{30} = \sqrt{180^2 - 30^2 - (180 - 2.517)}$ V_{3M} $O_{30} = \sqrt{180^2 - 30^2 - (180 - 2.517)}$ V_{3M} $O_{30} = \sqrt{180^2 - 30^2 - (180 - 2.517)}$ V_{3M} $O_{30} = \sqrt{180^2 - 30^2 - (180 - 2.517)}$ <		1.456 = 3.639(f+c)	
by the first of the (0.000 x (1.011)) 98.904= fir + (0.000 x (1.011)) 98.904= fir + (0.000 x (1.011)) 98.904= fir + (0.0704) fit= 98.140 Constants of tacheometrer are: 1) Additive constants (f+c) = 0.400 2) Multiplying constants fir = 98.140 Note2: Students may follow different procedure to solve equations. e) Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m. Ans: A versed sine or ordinate at center of long chord $O_0 = R \cdot \sqrt{(R^2 - (L/2)^2)}$ IM $O_{0-180 \cdot \sqrt{(180)^2 - (60/2)^2}$ $O0 = 180 \cdot 177.48$ O0 = 2.517 m IM The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{(R^2 - X^2)} - (R - O_0)$ $O_{10} = 179.72 - 177.483$ $O_{10} = 2.239 m$ $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ $O_{20} = 178.88 - 177.483$ $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ $O_{30} = 177.483 - 177.483$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $O_{30} = 177.483 - 177.483$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $O_{30} = 177.483 - 177.483$ $O_{30} = 1.402 m$ $O_{30} = 1.402 $		(I+C) = 0.400 Put this value in Equation (III)	
98.904= $fi + (0.764)$ 98.904= $fi + (0.764)$ $fi = 98.140$ Constants of tabeometrer are: 1) Additive constants ($fi < 98.140$ Note::::::::::::::::::::::::::::::::::::		$98.904 = f/i + (0.400) \times (1.911)$	
Image: fight systemFight		98.904 = f/i + (0.764)	
Constants of tacheometrer are: 1) Additive constants ($f+c$) = 0.400 2) Multiplying constants ($f+c$) = 9.140 Note1: Marking scheme, Eq1=1M, Eq2=1M, Solving equitions to correct answers =2M Note2: Students may follow different procedure to solve equations.Image: Constants 0T = 98.140 Note2: Students may follow different procedure to solve equations.e)Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m.Image: Constants 0T = 98.140 Note2: Students may follow different proceedure to solve equations.Ans:A versed sine or ordinate at center of long chord $O_0 = R - \sqrt{(R^2 - (L/2)^2)}$ Image: Constants 0T = 98.140 Note2: Students may follow different proceedure to solve equations.Ans:A versed sine or ordinate at center of long chordImage: Constants 0T = 98.140 $O_0 = R - \sqrt{(R^2 - (L/2)^2)}$ Image: Constants 0T = 98.140Image: Constants 0T = 98.140 $O_0 = 180 - \sqrt{(180)^2 - (60/2)^2}$ Ou = 180 - 177.48Image: Constants 0T = 98.140 $O = 2.517 m$ Image: Constants 0T = 90.2030 etc are worked out by the formula. $Ox = \sqrt{(R^2 - X^2)} - (R - O_0)$ Image: Constants 0T = 98.140 $O_{10} = 179.72 - 177.483$ Image: Constants 0T = 98.140Image: Constants 0T = 98.140 $O_{20} = 1402 m$ Image: Constants 0T = 98.140Image: Constants 0T = 98.140 $O_{30} = 177.483 - 177.483$ Image: Constants 0T = 94.978/150'', $\Delta D = 129.940'40'', \Delta E = 112''54''30'', \Delta E = 94.938'50'', \Delta D = 129.940'40'', \Delta E = 112''54''30'', \Delta E = 94.938'50'', \Delta D = 129.940'40'', \Delta E = 112''54''30'', \Delta E = 94.938'50'', \Delta D = 129.940'40'', \Delta E = 112''54''30'', L = 112''54''30'', L = 94.938'50'', \Delta D = 129.940$		f/i= 98.140	
1) Additive constants (1+c) = 0.4002) Multiplying constants (1 = 98.140Notof: Marking scheme, Eq1=1M, Eq2=1M, Solving equitions to correct answers =2MNote2: Students may follow different procedure to solve equations.c)Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m.Ans:A versed sine or ordinate at center of long chord $O_0 = R \cdot \sqrt{(R^2 - (L/2)^2)}$ IM $O_0 = R \cdot \sqrt{(R^2 - (L/2)^2)}$ IM $O_0 = 180 \cdot \sqrt{(180)^2 - (60/2)^2}$ OO = 180 \ (17.48)OO = 2.517 mIMThe ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{(R^2 - X^2)} - (R - O_0)$ 1/2M $O_{10} = \sqrt{(180^2 - 10^2)} - (180 - 2.517)$ 1/2M $O_{10} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ 1/2M $O_{20} = 1.402$ m0/30 = 1.402 m $O_{30} = 1.402$ m1/2M $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ 1/2M $O_{30} = 0.0$ m1/2M $O_{30} = 1.7.483 - 0.20 - 2.517)$ 1/2M $O_{30} = 1.402$ m1/2M $O_{30} = 1.402$ m1/2M $O_{30} = 0.0$ m1/2M5Attempt any TWO of the following:1/2Ma)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \angle B = 114^{\circ}55'40'', \angle C = 94^{\circ}38'50'', \angle D = 129^{\circ}4'40'', \angle E = 112^{\circ}54'30'', LB = 114^{\circ}55'40'', all = 129^{\circ}38'50'', all = 129^{\circ}40'40'', all = 128'4''$		Constants of tacheometrer are:	
2) Multiplying constants $V_1 = 98.140$ Note2: Students may follow different procedure to solve equations. e) Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m. Ans: A versed sine or ordinate at center of long chord $O_0 = R - \sqrt{(R^2 - (L/2)^2)}$ IM $O_0 = 180 - \sqrt{(180)^2 - (60/2)^2}$ OO = 180-177.48 OO = 2.517 m IM The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{(R^2 - X^2)} - (R - O_0)$ ////////////////////////////////////		1) Additive constants $(f+c) = 0.400$	
Note: 1: N		2) Multiplying constants $f/i = 98.140$	
e) Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m. Ans: A versed sine or ordinate at center of long chord $O_0 = R \cdot \sqrt{(R^2 \cdot (L/2)^2)}$ IM $O_0 = 180 \cdot \sqrt{(180)^2 \cdot (60/2)^2}$ OO = 180 $\cdot \sqrt{(180)^2 \cdot (60/2)^2}$ OO = 180 $\cdot \sqrt{(180)^2 \cdot (60/2)^2}$ OO = 2.517 m IM The ordinates at various distances 10, 20,30 etc are worked out by the formula. $O_x = \sqrt{(R^2 \cdot X^2)} \cdot (R \cdot O_0)$ V/2M $O_{10} = \sqrt{(180^2 \cdot 10^2)} - (180 - 2.517)$ V/2M $O_{10} = 179.72 - 177.483$ Ou = 2.317) $O_{10} = 179.72 - 177.483$ Ou = 2.317) $O_{20} = \sqrt{180^2 \cdot 20^2} \cdot (180 - 2.517)$ V/2M $O_{20} = 1.402$ m Ou = $\sqrt{180^2 \cdot 20^2} - (180 - 2.517)$ V/2M $O_{30} = \sqrt{180^2 \cdot 30^2} - (180 - 2.517)$ V/2M Ou = $\sqrt{177.483} - 177.483$ Ou = $\sqrt{177.483}$ Ou = $\sqrt{177.483} - 177.483$ Ou = $\sqrt{177.483} - 177.483 - 1278$ Ou = $\sqrt{177.483} - 177.483 - 1278 - 11278 - 177.483$ Ou = $\sqrt{1147.55'40''}$, $\mathcal{L} = 94^{\circ}38'50''$, $\mathcal{L} = 129^{\circ}40'40''$, $\mathcal{L} = 12^{\circ}40'40''$, $\mathcal{L} = 12^{$		Note 1. Marking scheme, Eq 1 – 114, Eq2 – 114, Solving equilions to conect answers –214 Note2: Students may follow different procedure to solve equations	
Ans: A versed sine or ordinate at center of long chord IM $O_0 = R \cdot \sqrt{R^2 \cdot (L/2)^2}$ IM $O_0 = 180 \cdot \sqrt{180}^2 \cdot (60/2)^2$ IM $O0 = 180 \cdot 177.48$ IM $O0 = 2.517 \text{ m}$ IM The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{R^2 \cdot X^2} \cdot (R \cdot O_0)$ Y2M $O_{10} = \sqrt{180^2 \cdot 10^2} \cdot (180 - 2.517)$ V2M $O_{10} = \sqrt{180^2 \cdot 20^2} \cdot (180 - 2.517)$ Y2M $O_{20} = \sqrt{180^2 \cdot 20^2} \cdot (180 - 2.517)$ Y2M $O_{20} = \sqrt{180^2 \cdot 30^2} - (180 - 2.517)$ Y2M $O_{30} = \sqrt{180^2 \cdot 30^2} - (180 - 2.517)$ Y2M $O_{30} = \sqrt{180^2 \cdot 30^2} - (180 - 2.517)$ Y2M $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ Y2M $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ Y2M $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ Y2M $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ Y2M $O_{30} = 0.0 \text{ m}$ Y2M $O_{30} = 1.402 \text{ m}$ Y2M $O_{30} = 0.0 \text{ m}$ Y2M $O_{30} = 0$	e)	Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m.	
$O_0 = R \cdot \sqrt{(R^2 \cdot (L/2)^2)}$ IM $O_0 = 180 \cdot \sqrt{(180)^2 \cdot (60/2)^2}$ 00 $O0 = 180 \cdot 177.48$ IM $O0 = 2.517 \text{ m}$ IM The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{(R^2 \cdot X^2)} \cdot (R \cdot O_0)$ $\sqrt{(R^2 - X^2)} \cdot (R \cdot O_0)$ $O_{10} = \sqrt{(180^2 - 10^2)} \cdot (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{10} = \sqrt{(180^2 - 10^2)} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{10} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{20} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{20} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\sqrt{(N_0)}$ $O_{30} = 0.0 \text{ m}$ $\sqrt{(N_0)^2}$ $O_{30} = 0.0 \text{ m}$ $(N_0)^$	Ans:	A versed sine or ordinate at center of long chord	
$\begin{array}{ c c c c c c } & O_{0=} 180 & -\sqrt{(180)^{2} \cdot (60/2)^{2}} & & & & & \\ & O_{0} = 180 \cdot 177.48 & & & & & \\ & O_{0} = 2.517 \text{ m} & & & & & & \\ & & & & & & \\ & & & & & $		$O_0 = R - \sqrt{(R^2 - (L/2)^2)}$	1M
O0 = 180-177.48 IM O0 = 2.517 m IM The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{(R^2 - X^2)} - (R - O_0)$ y_{2M} $O_{10} = \sqrt{(180^2 - 10^2)} - (180 - 2.517)$ y_{2M} $O_{10} = 179.72 - 177.483$ $y_{20} = 179.72 - 177.483$ $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ y_{2M} $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ y_{2M} $O_{20} = 1.402$ m y_{2M} $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ y_{2M} $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ y_{2M} $O_{30} = 1.402$ m y_{2M} $O_{30} = 177.483 - 177.483$ y_{2M} $O_{30} = 0.0$ m y_{2M} $O_{30} = 177.483 - 177.483$ y_{2M} $O_{30} = 0.0$ m y_{2M} $O_{30} = 0.0$ m y_{2M} A B "50"20", $\angle B = 114$ "5"5"40", $\angle C = 94$ "38"50", $\angle D = 129$ "40"40", $\angle E = 112$ "54"30". If the bearing of line AB is 221 "18"40", calculate bearing of the remaining lines.		$O_0 = 180 - \sqrt{(180)^2 - (60/2)^2}$	
O0 = 2.517 m IM The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{(R^2 - X^2)} - (R - O_0)$ 1/2M $O_{10} = \sqrt{(180^2 - 10^2)} - (180 - 2.517)$ 1/2M $O_{10} = 179.72 - 177.483$ 1/2M $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ 1/2M $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ 1/2M $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ 1/2M $O_{20} = 1.402 \text{ m}$ 1/2M $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ 1/2M $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ 1/2M $O_{30} = 177.483 - 177.483$ 1/2M $O_{30} = 0.0 \text{ m}$ 1/2M 5. Attempt any <u>TWO</u> of the following: 12M a) The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^\circ 50'20'', \ \angle B = 114^\circ 55'40'', \ \angle C = 94^\circ 38'50'', \ \angle D = 129^\circ 40'40'', \ \angle E = 112^\circ 54'30''. If the bearing of line AB is 221^\circ 18'40'', calculate bearing of the remaining lines. $		O0 = 180-177.48	
The ordinates at various distances 10, 20,30 etc are worked out by the formula. $O_X = \sqrt{(R^2 - X^2)} - (R - O_0)$ $O_{10} = \sqrt{(180^2 - 10^2)} - (180 - 2.517)$ $O_{10} = 179.72 - 177.483$ $O_{10} = 2.239 m$ $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ V_{20} $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ V_{20} $O_{20} = 1.402 m$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ V_{2M} $O_{30} = 1.402 m$ $O_{30} = 1.77.483 - 177.483$ $O_{30} = 177.483 - 177.483$ $O_{30} = 1.402 m$ V_{2M} 1/2M 5. Attempt any <u>TWO</u> of the following: 12M a) The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}40'40'', \ \angle E = 114^{\circ}55'40'', \ \angle E = 114^$		O0 = 2.517 m	1M
$O_{10} = \sqrt{180^2 \cdot 10^2} - (180 - 2.517)$ 7200 $O_{10} = 179.72 - 177.483$ $O_{10} = 2.239 \text{ m}$ $O_{20} = \sqrt{180^2 \cdot 20^2} - (180 - 2.517)$ $1/2 \text{ M}$ $O_{20} = \sqrt{180^2 \cdot 20^2} - (180 - 2.517)$ $1/2 \text{ M}$ $O_{20} = 1.402 \text{ m}$ $O_{30} = \sqrt{180^2 \cdot 30^2} - (180 - 2.517)$ $1/2 \text{ M}$ $O_{30} = \sqrt{180^2 \cdot 30^2} - (180 - 2.517)$ $1/2 \text{ M}$ $O_{30} = \sqrt{180^2 \cdot 30^2} - (180 - 2.517)$ $1/2 \text{ M}$ $O_{30} = 177.483 - 177.483$ $1/2 \text{ M}$ $O_{30} = 0.0 \text{ m}$ $1/2 \text{ M}$ 5. Attempt any <u>TWO</u> of the following:12M a) The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}4'30''.$ If the bearing of line AB is $221^{\circ}18'40'',$ calculate bearing of the remaining lines.		The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{(R^2-X^2)} - (R-O_0)$	1/14
$O_{10} = 179.72 - 177.483$ $V_{10} = 2.239 \text{ m}$ $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ $\sqrt{2}M$ $O_{20} = 178.88 - 177.483$ $V_{20} = 178.88 - 177.483$ $O_{20} = 1.402 \text{ m}$ $V_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\sqrt{2}M$ $O_{30} = 177.483 - 177.483$ V_{2M} $O_{30} = 0.0 \text{ m}$ $\sqrt{2}M$ 5.Attempt any TWO of the following:12Ma)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^\circ 50'20'', \ \angle B = 114^\circ 55'40'', \ \angle C = 94^\circ 38'50'', \ \angle D = 129^\circ 40'40'', \ \angle E = 112^\circ 54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.		$O_{10} = \sqrt{(180^2 - 10^2)} - (180 - 2.517)$	72111
$O_{10} = 2.239 \text{ m}$ $V_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ V_{2M} $O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ V_{2M} $O_{20} = 1.402 \text{ m}$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ V_{2M} $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ V_{2M} $O_{30} = 177.483 - 177.483$ V_{2M} $O_{30} = 0.0 \text{ m}$ V_{2M} 5. Attempt any <u>TWO</u> of the following: $12M$ a)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.		$O_{10} = 179.72 - 177.483$	
$O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$ $1/2M$ $O_{20} = 178.88 - 177.483$ $O_{20} = 1.402 m$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $1/2M$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $1/2M$ $O_{30} = 177.483 - 177.483$ $1/2M$ $O_{30} = 0.0 m$ $1/2M$ 5. Attempt any <u>TWO of the following:</u> 12Ma) The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.		$O_{10} = 2.239 m$	
$O_{20} = 178.88 - 177.483$ $O_{20} = 1.402 \text{ m}$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\frac{1}{2}M$ $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\frac{1}{2}M$ $O_{30} = 177.483 - 177.483$ $\frac{1}{2}M$ $O_{30} = 0.0 \text{ m}$ $\frac{1}{2}M$ 5.Attempt any TWO of the following: $12M$ a)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.		$O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$	¹∕2M
$O_{20} = 1.402 \text{ m}$ I_{2M} $O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ I_{2M} $O_{30} = 177.483 - 177.483$ I_{2M} $O_{30} = 0.0 \text{ m}$ I_{2M} 5.Attempt any TWO of the following:12Ma)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E =$ $112^{\circ}54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.		$O_{20} = 178.88 - 177.483$	
$O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$ $\frac{1}{2}M$ $O_{30} = 177.483 - 177.483$ $\frac{1}{2}M$ $O_{30} = 0.0 \text{ m}$ $\frac{1}{2}M$ 5.Attempt any <u>TWO</u> of the following:12Ma)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}54'30''.$ If the bearing of line AB is 221^{\circ}18'40'', calculate bearing of the remaining lines.		$O_{20} = 1.402 \text{ m}$	
$O_{30} = 177.483 - 177.483$ $\frac{1}{2M}$ $O_{30} = 0.0 \text{ m}$ $\frac{1}{2M}$ 5.Attempt any TWO of the following:12Ma)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E =$ $112^{\circ}54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.		$O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$	¹∕₂M
$O_{30} = 0.0 \text{ m}$ $1/2\text{M}$ 5.Attempt any TWO of the following:12Ma)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E =$ $112^{\circ}54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.		$O_{30} = 177.483 - 177.483$	
5.Attempt any <u>TWO</u> of the following:12Ma)The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E =$ 112°54'30''. If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.		$O_{30} = 0.0 \text{ m}$	¹∕₂M
a) The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.	5.	Attempt any <u>TWO</u> of the following:	12M
	a)	The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}54'30''$. If the bearing of line AB is 221°18'40'', calculate bearing of the remaining lines.	

	Ans:							
	Bearing of line AB =	221°18′40″						
	+ /B =	114°55′40″			1M			
	<u> </u>	336°14'20''			1111			
		100° 0′ 0″						
	$\frac{-100 \ 0 \ 0}{100}$							
	Bearing of line BC = $156^{\circ}14\ 20$							
	$+ 2L = 94^{\circ}3850$							
		250°53′10″			111			
	$-180^{\circ}0'0''$							
	Bearing of line CD =	= 70°53′10″						
	$+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$							
		200°33′50″						
		<u>- 180° 0′ 0′′</u>			1M			
	Bearing of line DE =	= 20°33′50″						
	<i>v</i> + ∠E =	112°54′30″						
		133°28′20″						
		$+ 180^{\circ} 0' 0''$						
	Rearing of line FA -	- 313°28′20″			1M			
	$\int \frac{d^2}{dt} = \frac$	- 87°50'20''						
	$\pm 2A$	-07 30 20						
		401 10 40						
		$-180^{\circ}0^{\circ}0^{\circ}$			1M			
	=	$= 221^{\circ}18^{\circ}40^{\circ} = Bea$	ring of line AB	0.11				
• `			Hen	ce U.K.				
b)	Calculate the corre	cted consecutive co	o-ordinates for the	following traverse. Appl	У			
	Bowditch Rule.		Ι					
	Line	Length in 'm'	Latitude	Departure				
	AB	335	- 334.91	- 7.80				
	BC	850	- 4.95	+ 849.99				
	CD	408	+ 407.44	- 21.35				
	DA	828	- 72,17	- 824.85				
	Ans:	020	/ = 1 /	021100				
	Lino	Longth in 'm'	Latituda	Doporturo				
		225						
	AD	555	- 554.91	- 7.80				
	BC	850	- 4.95	+ 849.99				
	CD	408	+ 407.44	- 21.35				
	DA	828	- 72.17	-824.85	114			
	Total	2421	- 4.59	- 4.01	IN			
	Total error in Latitude	= -4.59 (Correction	will be +ve)	·				
	Total error in departur	e = -4.01 (Correction	will be +ve)					
	Perimeter of traverse =	= 2421 m						
	By Bowditch's rule							
	Correction in latitude	or departure =						
			1 1 ()	Lenght of the side	1M			
		Total error in latitud	le or departure x { $\frac{1}{Pert}$	imeter of the traverse }				
	Correction in latitu	de	Correction in depar	rture				
			•					
	Line AB = +4.59 x $\frac{3}{2}$	$\frac{35}{35} = +0.64$	Line AB = +4.01 x $\frac{3}{2}$	$\frac{335}{100} = +0.55$				
	24	421	2	421				
		50 . 1 . 1		350 . 1 41	2M			
	Line BC = $+4.59 \text{ x} -$	$\frac{1}{100} = +1.01$	Line BC = +4.01 x $\frac{1}{2}$	$\frac{1}{121} = +1.41$				
	24	421		421				

			- 408	o 		~ • • • •	408	<i>co</i>		
	Line C	CD = +4.5	$9 \ge \frac{100}{2421} = +$	0.77	Line C	D = +4.01 x	$\frac{100}{2421} = +0.0$	68		
	Line I	DA = +4.5	9 x $\frac{828}{2421}$ = +	1.57	Line D	A = +4.01 x	$\frac{828}{2421} = +1.$	37		
	Correc	ted conse	cutive coor	dinates						
	Line	Length	Conse	ecutive	Correc	ction in	Correcte	d Consec.		
		(m)	Latitude	Departure	Latitude	Departur	Latitude	Departure		
						e				
	AB	335	- 334.91	-7.80	+0.64	+ 0.55	- 334.27	-7.25		2М
	BC	850	- 4.95	+ 849.99	+1.61	+1.41	-3.34	+851.40		2111
		408	+ 407.44	-21.35	+0.77	+0.08	+ 408.21	-20.67		
		020	- /2.17 - 4 59	-824.83	+ 1.37	+ 1.37	- 70.00	- 823.48		
			- 4.59	- 4.01	+ 4.59	+ 4.01	0.00	0.00		
c)	A tach	eometer v	vas set up a	t a station P	and follow	wing readin	igs were tal	ken on a ver	tically	
	held sta Statio	aff. The co on Staf	onstant of t	he instrume cal	ent was 100 Hair R). eading	F	Remarks		
	Р		$\begin{array}{c c} \text{on} & \text{angl} \\ \hline & 4^{\circ} \end{array}$	n'	1 050 1 1	05 1 160	R	L of BM		
	P	0	+ 10°	<u>°0′</u>	0.950, 1.0	55, 1.160		= 200 m		
	The ins	strument	was fitted v	with anallati	c lens. Det	ermine dist	ance PQ ar	nd RL of Q.		
	Ans: Given- Given	- $(f/i) = 1$ (f+d) = $\theta 1 = 4$ $h_1 = 1.1$ B.M. F	100, 0 (for anall $4^{\circ}0' \qquad \theta 2$ 105 m, h_2 RL = 200.00	latic lens) = 10°0' = 1.055 m) m						
	Staff in Staff in	itercept at itercept at	$BM = S_1 = S_2 = 1$: 1.160 – 1.0 .160 – 0.950	50 = 0.11 m	m				1M
	V ₁ at B	M = (f/i)S = 100 = 0.76	S ₁ x (sin2 <i>θ</i> 2 x 0.11 x sin 55 m	1)/2 + (f+d) n(2x4°0')/2	əsin θ1 + 0					1M
	V ₂ at B	$f = (f/i)S_2$ = 100 x = 3.591	x (sin202), 0.21 x sin(m	/2 + (f+d)sin 2x10°0')/2	n θ2 + 0					1M
	Horizo	ontal Dist	ance PQ =	$(f/i)S_2 \propto \cos(h/i)$	$e^2 \theta^2 + (f + e^2)$	d) $\cos \theta 2$				1M

	$= 100 \times 0.21 \times \cos^2 10^{\circ}0' + 0$								
	PQ = 20.37 m								
	RL of instrumental axis = RL of BM + h_1 + V_1								
	= 200.00 + 1.105 + 0.765	1M							
	= 201.87 m								
	RL of station Q = RL of instrumental axis + V_2 - h_2								
	= 201.87 + 3.591 - 1.055	IM							
	RL of station $Q = 204.406 \text{ m}$								
6.	Attempt any <u>TWO</u> of the following:								
a)	Describe stepwise procedure to prepare the layout of a small building using total station.								
	Ans:								
	Layout of small building by using total station:								
	1. On the plan supplied by an architect, number the column serially from left to right								
	and top to bottom starting from top left corner.	6M							
	2. Work out coordinates of column centre with respect to one plot corner or well	(for							
	defined point, assuming line parallel to any one face of building as meridian.	compl							
	3. Create an excel document with 4 independent columns one for column number and	ete							
	rest three for N, E & H coordinates. Upload this file to total station by using	proced							
	transfer software provided with instrument.	ure)							
	4. Set the total station at site at a point with respect which the coordinates of column								
	centre are work out. Initiate the total station by proving with the coordinates of								
	station and by orienting the telescope along the reference meridian.								
	5. Now, activate the setting out programme of the total station. Open the uploaded file								
	& bring in the coordinates of any column to be set out.								
	6. Hold prism pole at tentative position of that column on ground, bisect it & get								
	7 In past reading machine will display the discrepancies in the coordinates of the								
	7. In next reading machine will display the discrepancies in the coordinates of the								
	8 Direct the reflector man accordingly to occupy the new position bisect him again								
	& get measured its coordinates to know the discrepancy								
	9 Repeat the process till you get no discrepancy in the coordinates of point occupied								
	& point to be set out. In this way get marked centres of rest of the columns.								
	10. Check the accuracy of the process of setting out by comparing the diagonal								
	distance between the extreme column centres to their calculated values.								
b)	Apply knowledge of total station to prepare a contour map by describing its procedure.								
	Ans	<u> </u>							
	Procedure of preparing contour map using total station-								
	1) Preliminary set un –								
	Fix the total station over a station and level it.								
	Press the power button to switch on the instrument level instrument using								
	electronic vial Set bisection target as price								
	Select MODE B S function Stile management Screets (anter a	6M*							
	name)>accent								
	Then press ESC to go to the starting page								
L	record to be to the building puge.	I							

	2) Then go to S function> measure> rectangular co-ordinate> station							
	>press enter. Here enter the point number or name, X,Y,Z co-ordnates, instrument							
	height and prism code. Then press accept (Fs)							
	3) Adopt Cross section method for establishing the major grid around the study area.							
	Project suitably spaced cross sections on either side of the centre line of the area.							
	Choose several points at reasonable distances on either side.							
	4) Orient the instrument to the magnetic north or any other reference direction. Then set							
	zero by double clicking on 0 set (F3)							
	5) Keen the reflecting prism on the first point and turn the total station to the prism focus							
	it and bisect it exactly using horizontal and vertical clamps. Then select MEAS and the							
	display papel will show the point specification. Now select edit and re-enter the point							
	number or name point code and enter the prism height that we have set							
	6) Then press MEAS/SAVE (F3) so that the measurement to the first point will							
	automatically be saved and the display panel will show the second point. Then turn the							
	total station to second point and do the same procedure. Repeat the steps to the rest of							
	the stations and get all point details							
	7) Transfer the data stored in file to computer in the appropriate format							
	8) Using appropriate application software, contour map will be prepared							
	bing appropriate approation software, software, win be prepared.							
	*(Note- Student may write procedure depending upon the make and							
	<u>(Note-Student may write procedure, depending upon the make and</u>							
	MODEL OF total station used for practical and software used.							
	<u>Give credits accordingly.)</u>							
c)	Demonstrate the utility of Remote Sensing and GIS applications in Civil Engineering							
	with appropriate examples.							
	Ans-							
	Applications of Remote Sensing in Civil Engineering-							
	1) Silting of storage reservoirs harbors etc. – Remote sensing technique that makes							
	use of satellite imagery gives idea about the silting of reservoir qualitatively and to							
	some extent quantitatively.							
	2) Location of Percolation Tanks – The exact location of percolation tanks can be	21.4						
	carried out with the help of remote sensing technique, keeping in view that the site	JIVI (for						
	required for location of percolation tanks should be on permeable foundations.	(Ior						
	3) Revision of existing topo sheets - The rapid revision and updating of existing topo							
	(graphical) sheets can be carried out speedily with the help of aerial photography	three)						
	and satellite imagery.							
	4) Alignment of new highways and rail routes – The location of most economical							
	alternative sites for such works can very well be carried out speedily by making use							
	of aerial photographs and satellite imagery.							
	5) Location of Bridge site: The existing foundation condition along the proposed							
	bridge construction site can be ascertained with the help of aerial photographs and							
	or satellite imagery.							
	6) Location of Dam sites: For gravity, geological investigations of the existing rock in							
	and around the proposed dam site can be carried out by aerial photographs and or							
	satellite imagery. Geological features such folds, faults, dykes, fractures etc. can be							
	determined by the remote sensing technique.							
	7) Tunneling: Remote sensing i.e. aerial photography and or satellite imagery of the							
	area helps in furnishing all such information and thus ensures the safety of tunnel							
	during its construction stages.							
	8) Seepage losses in canals: Monitoring of soil moisture in and around the canal							
	system can be possible by remote sensing technique i.e. by careful study of aerial							
	photographs and satellite imagery of such areas.							
	photographic and batenite initigery of buen areas.							

 Applications of GIS in Civit Engineering- 1) Map making 2) Site selection 	
3) Mineral Exploration4) Land use planning and management	
5) Environmental Impact studies	
6) Natural Hazard mapping or assessment	t
7) Water Resources availability.	