11920

3 Hours / 70 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any FIVE of the following:
a) State whether the function is odd or even, $f(x)=\frac{e^{x}+e^{-x}}{2}$
b) If $f(x)=\log _{4}^{x}+3$, find $f(1 / 4)$
c) Find $d y / d x$ if $y=x^{2} \cdot e^{x}$
d) Evaluate : $\int\left[e^{x}+a^{x}+x^{a}+a^{a}\right] d x$
e) Evaluate : $\int[1 /(1+\cos 2 x)] d x$
f) Find the area bounded by $y=x, \mathrm{X}$-axis and $x=0$ to $x=4$.
g) Find a real root of equation $x^{3}+4 x-9=0$ in the interval $(1,2)$ by using bisection method (only one iteration)
2. Solve any THREE of the following:
a) Find $\frac{d y}{d x}$, if $y=\frac{5 e^{x}}{3 e^{x}+1}$ at $x=0$
b) If $x=a(1+\cos \theta), y=a(1-\cos \theta)$ find $d y / d x$
c) A metal wire 36 cm long is bent to form a rectangle find its dimensions when its area is maximum.
d) Find radius of curvature of a curve $y=\log (\sin x)$ at $x=\pi / 2$
3. Solve any THREE of the following:
a) Find equation of tangent and normal to the curve $4 x^{2}+9 y^{2}=40$ at point $(1,2)$
b) Find $d y / d x$ if $y=\tan ^{-1}\left[\frac{2 x}{1+35 x^{2}}\right]$
c) If $x^{y}=e^{(x-y)}$ Show that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$
d) Evaluate $: \int \frac{d x}{5+3 \cos 2 x}$
4. Solve any THREE of the following:
a) Evaluate $: \int \frac{\left[e^{x}(x+1)\right]}{\cos ^{2}\left(x \cdot e^{x}\right)} d x$
b) Evaluate : $\int \frac{d x}{2 x^{2}+3 x+2}$
c) Evaluate $: \int x^{2} \cdot \tan x d x$
d) Evaluate $: \int \frac{\sec ^{2} x}{(\tan x)[\tan x+1]} d x$
e) Evaluate : $\int_{0}^{\pi / 2} \frac{1}{1+\sqrt{\tan x}} d x$
5. Solve any TWO of the following:
a) Find area bounded by the curve $y=x^{2}$ and the line $y=x$
b) Attempt the following:
(i) From the differential equation by eliminating the arbitrary constant if $y=\mathrm{A} \cos x+\mathrm{B} \sin x$.
(ii) Solve $\left(1+x^{2}\right) d y-x^{2} \cdot y d x=0$
c) Solve the D.E. $\frac{d q}{d t}+\frac{1}{R C} q=\frac{E}{R}$ given that $q=0$ when $t=0$ and E, R, C are constant.
6. Solve any TWO of the following:
a) Attempt the following:
(i) Solve the equation by Gauss - Seidal method.
(two iterations only)
$10 x+y+2 z=13, \quad 3 x+10 y+z=14, \quad 2 x+3 y+10 z=15$
(ii) Solve the following system of equation by using Jacobi-Iteration method. (two iterations)

$$
5 x+2 y+z=12, \quad x+4 y+2 z=15, \quad x+2 y+5 z=20
$$

b) Solve the following system of equations by using Gauss elimination method.

$$
x+2 y+3 z=14, \quad 3 x+y+2 z=11, \quad 2 x+3 y+z=11
$$

c) Using Newton - Raphson method find the approximate root of the equation (use four iterations)

$$
x^{2}+x-5=0
$$

