

22103

11819 3 Hours / 70 Marks

Seat No.				

Instructions : (1) All questions are compulsory.

- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Use of Non-programmable Electronic Pocket Calculator is *permissible*.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

Marks

10

- 1. Attempt any five of the following :
 - a) Evaluate \log_3^{81} .
 - b) Find the area of the triangle whose vertices are (4, 3) (1, 4) and (2, 3).
 - c) Find the value of $\sin(15^\circ)$ using compound angles.
 - d) Find the area of rhombus whose diagonals are 6 cm and 9 cm.
 - e) The length, breadth and height of a cuboid are 8 cm, 11 cm and 15 cm respectively. Find the total surface area.
 - f) Find the range of the data :
 - 14, 18, 22, 35, 42, 44, 8, 7, 5 and 2.
 - g) If mean is 34.5 and standard deviation is 5 find the coefficient of variance.

Marks

2. Attempt any three of the following :

a) If
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$
 prove that $A^2 = I$.

b) Resolve into partial fractions :
$$\frac{x^2 + 23x}{(x+3)(x^2+1)}$$

c) Solve the following equations by Cramer's rule :

$$x + y + z = 2$$
$$y + z = 1$$
$$x + z = 3$$

d) Find mean of the following data :

Class-Interval	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	3	5	8	3	1

3. Attempt any three of the following :

a) If
$$\tan A = \frac{1}{2}$$
, $\tan B = \frac{1}{3}$, find the value of $\tan (A + B)$.

b) Prove :
$$\tan\left(\frac{\pi}{4} + A\right) = \frac{\cos A + \sin A}{\cos A - \sin A}$$
.

c) Prove :
$$\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A.$$

d) Prove :
$$\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right).$$

4. Attempt any three of the following :

a) If
$$A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$$
 show that $A^2 - 8A$ is a scalar matrix.

12

12

c) Prove that
$$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$$

d) Prove :
$$\sin A \cdot \sin(60 - A) \cdot \sin(60 + A) = \frac{1}{4} \sin 3A$$
.

e) Prove :
$$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \cos^{-1}\left(\frac{9}{2}\right)$$

- 5. Attempt any two of the following :
 - a) Attempt the following :
 - i) Find the equation of straight line passes through the points (-4, 6) and (8, -3).
 - ii) Find the equation of line passing through the point (2, 5) and through the intersection of the lines x + y = 0 and 2x y = 9.

b) Attempt the following :

- i) Find the acute angle between the lines 3x + 2y + 4 = 0 and 2x 3y 7 = 0.
- ii) Find the distance between the lines 3x + 2y = 5 and 6x + 4y = 6.
- c) Attempt the following :
 - i) A square grassy plot is of side 100 metre. It has a gravel path 10 metres wide all round it on the inside. Find the area of path.
 - ii) The volume of cube is 1000 cm³. Find its total surface area.
- 6. Attempt any two of the following :
 - a) Find mean, standard deviation and coefficient of variance of the following data :

Class-Interval	0-10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	3	5	8	3	1

b) Attempt the following :

i) Find mean for the following data :

Class-Interval	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
Frequency	4	6	10	18	9	3

12

12

Marks

[3]

Marks

ii) The two sets of observation are given below :

Set – I	Set – II
$\overline{\mathbf{x}} = 82.5$	$\overline{\mathbf{x}} = 48.75$
σ=7.3	$\sigma = 8.35$

Which of the two sets is more consistent?

c) Solve the following equations by matrix inversion method :

x + 3y + 2z = 63x - 2y + 5z = 52x - 3y + 6z = 7.