22103

11920
3 Hours / 70 Marks
Seat No. \square

Instructions: (1) All Questions are compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following :

(a) Find the value of x if $\log _{3}(x+6)=2$.
(b) Find the area of triangle whose vertices are $(-3,1),(1,-3)$ and $(2,3)$.
(c) Without using calculator, find the value of $\cos \left(-765^{\circ}\right)$.
(d) Find the length of the longest pole that can be placed in a room 12 m long 9 m broad and 8 m high.
(e) Find the volume of the sphere whose surface area is 616 sq. m.
(f) If mean is 82 and standard deviation is 7, find the coefficient of variance.
(g) Find range and coefficient of range for the data :

$$
3,7,11,2,16,17,22,20,19
$$

2. Attempt any THREE of the following :
(a) If $\mathrm{A}=\left[\begin{array}{ccc}-2 & 0 & 2 \\ 3 & 4 & 5\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}2 & 1 \\ 3 & 5 \\ 0 & 2\end{array}\right]$ whether AB is singular or non-singular matrix.
(b) Resolve into partial fraction :

$$
\frac{2 x+3}{x^{2}-2 x-3}
$$

(c) The voltages in an circuit are related by the following equations :
$\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}=9$
$\mathrm{V}_{1}-\mathrm{V}_{2}+\mathrm{V}_{3}=3$
$\mathrm{V}_{1}+\mathrm{V}_{2}-\mathrm{V}_{3}=1$
Find $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ by using Cramer's Rule.
(d) Compute standard deviation for the following data:

$$
1,2,3,4,5,6,7
$$

3. Attempt any THREE of the following :
(a) Simplify :
$\frac{\cos ^{2}\left(180^{\circ}-\theta\right)}{\sin (-\theta)}+\frac{\cos ^{2}\left(270^{\circ}+\theta\right)}{\sin (180+\theta)}$
(b) Prove that:
$1+\tan \theta \cdot \tan 2 \theta=\sec 2 \theta$.
(c) Prove that:
$\frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}=\tan 5 A$.
(d) Prove that:

$$
\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}
$$

4. Attempt any THREE of the following :
(a) If $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$ verify $(A B)^{T}=B^{T} A^{T}$.
(b) Resolve in to partial fraction :
$\frac{3 x-2}{(x+2)\left(x^{2}+4\right)}$
(c) Without using calculator, prove that
$\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ}=\frac{1}{16}$
(d) Prove that:
$\tan \mathrm{A} \cdot \tan (60-\mathrm{A}) \cdot \tan \left(60+\mathrm{A}^{\circ}\right)=\tan 3 \mathrm{~A}$
(e) If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are obtuse angles and $\sin \mathrm{A}=\frac{12}{13}, \cos \mathrm{~B}=\frac{-4}{5}$,
find $\cos (A+B)$.
5. Attempt any TWO of the following :
(a) Attempt the following :
(i) Find length of perpendicular from the point $\mathrm{P}(2,5)$ on the line $2 x+3 y-6=0$.
(ii) Find the equation of line passing through $(2,3)$ and having slope 5 units.
(b) Attempt the following :
(i) Find the equation of the line passing through the point $(2,3)$ and perpendicular to the line $3 x-5 y=6$.
(ii) Find the acute angle between the lines $3 x-y=4,2 x+y=3$.
(c) Attempt the following :
(i) A cylinder has hemispherical ends having radius 14 cm and height 50 cm . Find the total surface area.
(ii) A solid right circular cone of radius 2 m and height 27 m is melted and recasted into a sphere. Find the volume and surface area of the sphere.
6. Attempt any TWO of the following :
(a) Find the mean, standard deviation and coefficient of variance of the following data :

Class - Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	14	23	27	21	15

(b) Attempt the following :
(i) From the following data, calculate range and coefficient of range :

Marks	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$
No. of Students	6	10	16	14	8	4

(ii) The two set of observations are given below :

Set I	Set II
$\bar{x}=82.5$	$\bar{x}=48.75$
$\sigma=7.3$	$\sigma=8.35$

Which of two sets is more consistent?
(c) Solve the following equations by matrix inversion method:
$x+y+z=3$
$3 x-2 y+3 z=4$
$5 x+5 y+z=11$

