
 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 1 / 23 
 

22412 

Important Instructions to examiners: 

1) The answers should be examined by key words and not as word-to-word as given in the model  

     answer scheme. 

2) The model answer and the answer written by candidate may vary but the examiner may try to  

     assess the understanding level of the candidate. 

3) The language errors such as grammatical, spelling errors should not be given more Importance  

     (Not applicable for subject English and Communication Skills). 

4) While assessing figures, examiner may give credit for principal components indicated in the 

     figure. The figures drawn by candidate and model answer may vary. The examiner may give 

 credit for any equivalent figure drawn. 

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant 

    values may vary and there may be some difference in the candidate’s answers and model 

    answer. 

6) In case of some questions credit may be given by judgement on part of examiner of relevant 

    answer based on candidate’s understanding. 

7) For programming language papers, credit may be given to any other program based on  

    equivalent concept. 

 

Q.

No

. 

Sub 

Q.N. 

Answer Marking 

Scheme 

1.  

a) 

Ans. 

Attempt any FIVE of the following: 

List any eight features of Java. 

Features of Java: 

1. Data Abstraction and Encapsulation 

2. Inheritance 

3. Polymorphism 

4. Platform independence 

5. Portability 

6. Robust 

7. Supports multithreading 

8. Supports distributed applications 

9. Secure 

10. Architectural neutral 

11.  Dynamic 

10 

2M 

 

 

 

 

Any 

eight 

features 

2M 

 b) 

Ans. 

State use of finalize( ) method with its syntax. 

Use of finalize( ): 

Sometimes an object will need to perform some action when it is 

2M 

 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 2 / 23 
 

22412 

destroyed. Eg. If an object holding some non java resources such as 

file handle or window character font, then before the object is 

garbage collected these resources should be freed. To handle such 

situations java provide a mechanism called finalization. In 

finalization, specific actions that are to be done when an object is 

garbage collected can be defined. To add finalizer to a class define 

the finalize() method. The java run-time calls this method whenever it 

is about to recycle an object. 

 

Syntax: 

protected void finalize() { 

} 

 

 

 

Use 1M 

 

 

 

 

 

Syntax 

1M 

 

 c) 

 

 

Ans. 

Name the wrapper class methods for the following: 

(i)   To convert string objects to primitive int. 

(ii)  To convert primitive int to string objects. 

(i)   To convert string objects to primitive int: 

String str=”5”; 

       int value = Integer.parseInt(str); 

 

(ii)  To convert primitive int to string objects: 

int value=5; 

       String str=Integer.toString(value); 

2M 

 

 

 

 

1M  for 

each 

method 

 d) 

 

Ans. 

List the types of inheritances in Java. 

(Note: Any four types shall be considered) 

Types of inheritances in Java: 

i. Single level inheritance 

ii. Multilevel inheritance 

iii. Hierarchical inheritance 

iv. Multiple inheritance 

v. Hybrid inheritance 

2M 

 

 

Any 

four 

types            

½M 

each 

 e) 

Ans. 

Write the syntax of try-catch-finally blocks. 

try{ 

//Statements to be monitored for any exception 

} catch(ThrowableInstance1 obj) { 

//Statements to execute  if this type of exception occurs 

} catch(ThrowableInstance2 obj2) { 

//Statements 

}finally{ 

2M 

 

 

Correct 

syntax 

2M 

 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 3 / 23 
 

22412 

//Statements which should be executed even if any exception happens 

} 
 f) 

Ans. 

Give the syntax of < param > tag to pass parameters to an applet. 

 

Syntax:  

<param name=”name” value=”value”> 

 

Example: 

<param name=”color” value=”red”> 

2M 

 

 

Correct 

syntax 

2M 

 

 

 g) 

Ans. 

Define stream class. List its types. 

Definition of stream class: 

An I/O Stream represents an input source or an output destination. A 

stream can represent many different kinds of sources and 

destinations, including disk files, devices, other programs, and 

memory arrays. Streams support many different kinds of data, 

including simple bytes, primitive data types, localized characters, and 

objects. Java’s stream based I/O is built upon four abstract classes: 

InputStream, OutputStream, Reader, Writer. 

 

Types of stream classes: 

i. Byte stream classes 

ii. Character stream classes. 

2M 

 

 

 

Definitio

n 1M 

 

 

 

 

 

Types 

1M 

2.  

a) 

 

 

Ans. 

Attempt any THREE of the following: 

Explain the concept of platform independence and portability 

with respect to Java language. 

(Note: Any other relevant diagram shall be considered). 

Java is a platform independent language. This is possible because 

when a java program is compiled, an intermediate code called the 

byte code is obtained rather than the machine code. Byte code is a 

highly optimized set of instructions designed to be executed by the 

JVM which is the interpreter for the byte code. Byte code is not a 

machine specific code. Byte code is a universal code and can be 

moved anywhere to any platform.  Therefore java is portable, as it 

can be carried to any platform. JVM is a virtual machine which exists 

inside the computer memory and is a simulated computer within a 

computer which does all the functions of a computer.  Only the JVM 

needs to be implemented for each platform. Although the details of 

the JVM will defer from platform to platform, all interpret the same 

12 

4M 

 

 

 

 

 

Explana

tion 3M 

 

 

 

 

 

 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 4 / 23 
 

22412 

byte code. 

 

 
 

 

 

 

 

 

Diagram 

1M 

 b) 

 

Ans. 

Explain the types of constructors in Java with suitable example. 

(Note: Any two types shall be considered). 

Constructors are used to initialize an object as soon as it is created. 

Every time an object is created using the ‘new’ keyword, a 

constructor is invoked. If no constructor is defined in a class, java 

compiler creates a default constructor. Constructors are similar to 

methods but with to differences, constructor has the same name as 

that of the class and it does not return any value.  

The types of constructors are: 

1. Default constructor 

2. Constructor with no arguments 

3. Parameterized constructor 

4. Copy constructor 

 

1.  Default constructor: Java automatically creates default constructor 

if there is no default or parameterized constructor written by user. 

Default constructor in Java initializes member data variable to default 

values (numeric values are initialized as 0, Boolean is initialized as 

false and references are initialized as null).  

class test1 {  

int i;  

boolean b;  

byte bt;  

float ft;  

String s; 

4M 

 

 

 

 

 

 

Explana

tion of 

the two 

types of 

construc

tors 2M 

 

  

Example 

2M 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 5 / 23 
 

22412 

public static void main(String args[]) {  

test1 t = new test1(); // default constructor is called.  

System.out.println(t.i);  

System.out.println(t.s);  

System.out.println(t.b);  

System.out.println(t.bt);  

System.out.println(t.ft);  

   }  

}  

2. Constructor with no arguments: Such constructors does not have 

any parameters. All the objects created using this type of constructors 

has the same values for its datamembers. 

Eg: 

class Student { 

int roll_no; 

String name; 

Student() { 

roll_no = 50; 

name="ABC"; 

} 

void display() { 

System.out.println("Roll no is: "+roll_no); 

System.out.println("Name is : "+name); 

} 

public static void main(String a[]) { 

Student s = new Student(); 

s.display(); 

} 

} 

 

3. Parametrized constructor: Such constructor consists of parameters. 

Such constructors can be used to create different objects with 

datamembers having different values. 

class Student { 

int roll_no; 

String name; 

Student(int r, String n) { 

roll_no = r; 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 6 / 23 
 

22412 

name=n; 

} 

void display() { 

System.out.println("Roll no is: "+roll_no); 

System.out.println("Name is : "+name); 

} 

public static void main(String a[]) { 

Student s = new Student(20,"ABC"); 

s.display(); 

} 

} 

 

4. Copy Constructor : A copy constructor is a constructor that creates 

a new object using an existing object of the same class and initializes 

each instance variable of newly created object with corresponding 

instance variables of the existing object passed as argument. This 

constructor takes a single argument whose type is that of the class 

containing the constructor. 

class Rectangle 

{ 

 int length; 

 int breadth; 

 Rectangle(int l, int b) 

{  

   length = l; 

   breadth= b; 

  } 

  //copy constructor 

  Rectangle(Rectangle obj) 

 { 

   length = obj.length; 

   breadth= obj.breadth; 

  } 

 public static void main(String[] args) 

 { 

 Rectangle r1= new Rectangle(5,6); 

 Rectangle r2= new Rectangle(r1); 

System.out.println("Area  of First Rectangle : "+ 

(r1.length*r1.breadth)); 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 7 / 23 
 

22412 

System .out.println("Area of First Second Rectangle : "+ 

(r1.length*r1.breadth)); 

 } 

} 

 c) 

Ans. 

Explain the two ways of creating threads in Java. 

Thread is a independent path of execution within a program. 

There are two ways to create a thread: 

1.  By extending the Thread class. 

Thread class provide constructors and methods to create and perform 

operations on a thread. This class implements the Runnable interface. 

When we extend the class Thread, we need to implement the method 

run(). Once we create an object, we can call the start() of the thread 

class for executing the method run(). 

Eg: 

class MyThread extends Thread { 

public void run() { 

     for(int i = 1;i<=20;i++) { 

     System.out.println(i); 

 } 

} 

public static void main(String a[]) { 

MyThread t = new MyThread(); 

 t.start(); 

   } 

} 

a. By implementing the runnable interface. 

Runnable interface has only on one method- run(). 

Eg: 

class MyThread implements Runnable { 

public void run() { 

   for(int i = 1;i<=20;i++) { 

   System.out.println(i); 

 } 

} 

  public static void main(String a[]) { 

  MyThread m = new MyThread(); 

  Thread t = new Thread(m); 

  t.start(); 

  } 

4M 

 

 

 

2M  

each for 

explaini

ng of  

two 

types 

with 

example 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 8 / 23 
 

22412 

} 

 
 d) 

Ans. 

Distinguish between Input stream class and output stream class. 

Java I/O (Input and Output) is used to process the input and produce 

the output. 

Java uses the concept of a stream to make I/O operation fast. The 

java.io package contains all the classes required for input and output 

operations. A stream is a sequence of data. In Java, a stream is 

composed of bytes.  
 

Sr. 

No. 

Input stream class Output stream class 

1 Java application uses an 

input stream to read data 

from a source;  

Java application uses an output 

stream to write data to a 

destination;. 

2 It may read from a file, an 

array, peripheral device or 

socket 

It may be a write to file, an 

array, peripheral device or 

socket 

3 Input stream classes reads 

data as bytes 

Output stream classes writes 

data as bytes 

4 Super class is the abstract 

inputStream class 

Super class is the abstract 

OutputStream class 

5 Methods: 

public int read() throws 

IOException 

public int available() 

throws IOException 

public void close() throws 

IOException 

 

Methods: 

public void write(int b) throws 

IOException 

public void write(byte[] b) 

throws IOException 

public void flush() throws 

IOException 

public void close() throws 

IOException 

6 The different subclasses 

of Input Stream are:                 

File Input stream,                    

Byte Array Input Stream, 

Filter Input Stream,                

Piped Input Stream, 

Object Input Stream, 

DataInputStream. 

The different sub classes of 

Output Stream class are:        

File Output Stream,                         

Byte Array Output Stream , 

Filter output Stream,                  

Piped Output Stream,                                 

Object Output Stream, 

DataOutputStream 
 

4M 

 

 

 

 

 

Any 

four 

points 

for input 

stream 

class 

and 

output 

stream 

class 1M 

each 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 9 / 23 
 

22412 

3.  

a) 

 

 

Ans. 

Attempt any THREE of the following: 

Define a class student with int id and string name as data 

members and a method void SetData ( ). Accept and display the 

data for five students. 

import java.io.*; 

class student 

{ 

int id; 

String name; 

BufferedReader br = new BufferedReader(new 

InputStreamReader(System.in)); 

void SetData() 

{ 

 try 

{ 

   System.out.println("enter id and name for student"); 

    id=Integer.parseInt(br.readLine()); 

    name=br.readLine(); 

} 

   catch(Exception ex) 

   {} 

} 

 void display() 

{ 

     System.out.println("The id is " + id + " and the name is "+ name); 

 } 

public static void main(String are[]) 

{ 

     student[] arr; 

     arr = new student[5]; 

     int i; 

     for(i=0;i<5;i++) 

    { 

   arr[i] = new student(); 

    } 

    for(i=0;i<5;i++) 

    { 

   arr[i].SetData(); 

     } 

12 

4M 

 

 

 

 

 

 

 

 

 

Correct 

logic 4M 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 10 / 23 
 

22412 

            for(i=0;i<5;i++) 

    { 

  arr[i].display(); 

    } 

 } 

} 

 b) 

Ans. 

Explain dynamic method dispatch in Java with suitable example. 

Dynamic method dispatch is the mechanism by which a call to an 

overridden method is resolved at run time, rather than compile time. 

 When an overridden method is called through a superclass 

reference, Java determines which version (superclass/subclasses) of 

that method is to be executed based upon the type of the object being 

referred to at the time the call occurs. Thus, this determination is 

made at run time. 

 At run-time, it depends on the type of the object being referred to 

(not the type of the reference variable) that determines which version 

of an overridden method will be executed 

 A superclass reference variable can refer to a subclass object. This 

is also known as upcasting. Java uses this fact to resolve calls to 

overridden methods at run time. 

Therefore, if a superclass contains a method that is overridden by a 

subclass, then when different types of objects are referred to through 

a superclass reference variable, different versions of the method are 

executed. Here is an example that illustrates dynamic method 

dispatch: 

// A Java program to illustrate Dynamic Method  

// Dispatch using hierarchical inheritance  

class A  

{  

    void m1()  

    {  

        System.out.println("Inside A's m1 method");  

    }  

}  

 

class B extends A  

{  

        // overriding m1()  

        void m1()  

4M 

 

 

 

 

 

 

 

 

Explana

tion 2M 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 

2M 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 11 / 23 
 

22412 

        {  

 System.out.println("Inside B's m1 method");  

         }  

}  

 

class C extends A  

{  

        // overriding m1()  

        void m1()  

       {  

 System.out.println("Inside C's m1 method");  

       }  

}  

 

// Driver class  

class Dispatch  

{  

      public static void main(String args[])  

     {  

 // object of type A  

 A a = new A();  

 

 // object of type B  

 B b = new B();  

 

 // object of type C  

 C c = new C();  

 

 // obtain a reference of type A  

 A ref;  

   

 // ref refers to an A object  

 ref = a;  

 

 // calling A's version of m1()  

 ref.m1();  

 

 // now ref refers to a B object  

 ref = b;  



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 12 / 23 
 

22412 

 

 // calling B's version of m1()  

 ref.m1();  

 

 // now ref refers to a C object  

 ref = c;  

 

 // calling C's version of m1()  

 ref.m1();  

 }  

} 

 c) 

 

 

 

 

Ans. 

Describe the use of following methods: 

(i)    Drawoval  ( ) 

(ii)   getFont ( ) 

(iii)  drawRect ( ) 

(iv)  getFamily ( ) 
(i) Drawoval ( ): Drawing Ellipses and circles: To draw an Ellipses 

or circles used drawOval() method can be used. Syntax: void 

drawOval(int top, int left, int width, int height) The ellipse is drawn 

within a bounding rectangle whose upper-left corner is specified by 

top and left and whose width and height are specified by width and 

height.To draw a circle or filled circle, specify the same width and 

height. 

 

Example: g.drawOval(10,10,50,50); 

 

(ii) getFont ( ): It is a method of Graphics class used to get the font 

property 

Font f = g.getFont(); 

String fontName = f.getName(); 

Where g is a Graphics class object and fontName is string containing 

name of the current font. 

 

(iii) drawRect ( ): The drawRect() method display an outlined 

rectangle.  

Syntax: void drawRect(int top,int left,int width,int height)  

The upper-left corner of the Rectangle is at top and left. The 

dimension of the Rectangle is specified by width and height.  

Example: g.drawRect(10,10,60,50); 

4M 

 

 

 

 

 

 

 

 

 

Each 

method 

1M 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 13 / 23 
 

22412 

(iv)  getFamily ( ): The getfamily() method Returns the family of the 

font. 

String family = f.getFamily(); 

Where f is an object of Font class 

 d) 

 

 

Ans. 

Write a program to count number of words from a text file using 

stream classes. 

(Note : Any other relevant logic shall be considered) 

import java.io.*; 

public class FileWordCount 

{ 

public static void main(String are[]) throws IOException 

{ 

File f1 = new File("input.txt"); 

int wc=0; 

FileReader fr = new FileReader (f1); 

int c=0;  

try  

{  

   while(c!=-1) 

{ 

    c=fr.read();  

    if(c==(char)' ') 

    wc++; 

 }   

 System.out.println("Number of words :"+(wc+1)); 

}  

finally  

{  

    if(fr!=null) 

    fr.close();  

     } 

   } 

} 

4M 

 

 

 

 

 

 

 

 

 

Correct 

program 

4M 

4.  

a) 

 

Ans. 

 

Attempt any THREE of the following: 

Describe instance Of and dot (.) operators in Java with suitable 

example. 

Instance of  operator: 

The java instance of operator is used to test whether the object is an 

instance of the specified type (class or subclass or interface). 

12 

4M 

 

 

 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 14 / 23 
 

22412 

The instance of in java is also known as type comparison operator 

because it compares the instance with type. It returns either true or 

false. If we apply the instance of operator with any variable that has 

null value, it returns false. 

Example 

class Simple1{   

 public static void main(String args[]){   

 Simple1 s=new Simple1();   

 System.out.println(sinstanceofSimple1);//true   

 }   

}   

 

dot (.) operator: 

The dot operator, also known as separator or period used to separate a 

variable or method from a reference variable. Only static variables or 

methods can be accessed using class name. Code that is outside the 

object's class must use an object reference or expression, followed by 

the dot (.) operator, followed by a simple field name. 

Example 

this.name=”john”; where name is a instance variable referenced by 

‘this’ keyword 

c.getdata(); where getdata() is a method invoked on object ‘c’. 

 

 

 

 

 

Descript

ion and 

example 

of each 

operator 

2M 

 b) 

Ans. 

Explain the four access specifiers in Java. 

There are 4 types of java access modifiers:  

1. private 2. default 3. Protected 4. public  

 

1) private access modifier: The private access modifier is accessible 

only within class. 

2) default access specifier: If you don’t specify any access control 

specifier, it is default, i.e. it becomes implicit public and it is 

accessible within the program. 

3) protected access specifier: The protected access specifier is 

accessible within package and outside the package but through 

inheritance only. 

4) public access specifier: The public access specifier is accessible 

everywhere. It has the widest scope among all other modifiers. 

 

4M 

 

 

 

 

Each 

access 

specifier

s 1M 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 15 / 23 
 

22412 

 c) 

 

Ans. 

Differentiate between method overloading and method 

overriding. 

Sr. 

No. 

Method overloading Method overriding 

1 Overloading occurs when 

two or more methods in 

one class have the same 

method name but different 

parameters. 

Overriding means having two 

methods with the same 

method name and parameters 

(i.e., method signature) 

2 In contrast, reference type 

determines which 

overloaded method will be 

used at compile time. 

The real object type in the 

run-time, not the reference 

variable's type, determines 

which overridden method is 

used at runtime 

3 Polymorphism not applies 

to overloading 

Polymorphism applies to 

overriding 

4 overloading is a compile-

time concept. 

Overriding is a run-time 

concept 
 

4M 

 

 

 

 

 

Any 

four 

points 

1M each 

 d) 

 

Ans. 

Differentiate between Java Applet and Java Application (any 

four points) 

Sr. 

No. 

Java Applet Java Application 

1 Applets run in web pages Applications run on stand-

alone systems. 

2 Applets are not full 

featured application 

programs. 

Applications are full featured 

programs. 

3 Applets are the small 

programs. 

Applications are larger 

programs. 

4 Applet starts execution 

with its init(). 

Application starts execution 

with its main (). 

5 Parameters to the applet 

are given in the HTML 

file. 

Parameters to the application 

are given at the command 

prompt 

6 Applet cannot access the 

local file system and 

resources 

Application can access the 

local file system and 

resources. 

7 Applets are event driven Applications are control 

driven. 
 

4M 

 

 

 

 

 

 

 

Any 

four 

points 

1M each 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 16 / 23 
 

22412 

 e) 

Ans. 

Write a program to copy content of one file to another file. 

class fileCopy  

{  

   public static void main(String args[]) throws IOException  

{  

FileInputStream in= new FileInputStream("input.txt");  

FileOutputStream out= new FileOutputStream("output.txt");  

int c=0;  

try  

{  

   while(c!=-1) 

   { 

    c=in.read();  

    out.write(c);  

       }   

        System.out.println("File copied to output.txt...."); 

     }  

 finally  

 {  

        if(in!=null) 

        in.close();  

        if(out!=null)  

        out.close();  

      } 

    } 

} 

4M 

 

 

 

 

 

 

Correct 

logic 2M 

 

 

 

Correct 

Syntax 

2M 

5.  

a) 

 

 

Ans. 

Attempt any TWO of the following: 

Describe the use of any methods of vector class with their syntax. 

(Note: Any method other than this but in vector class shall be 

considered for answer). 

 boolean  add(Object obj)-Appends the specified element to the 

end of this Vector. 

 Boolean add(int index,Object obj)-Inserts the specified element at 

the specified position in this Vector. 

 void addElement(Object obj)-Adds the specified component to 

the end of this vector, increasing its size by one. 

 int capacity()-Returns the current capacity of this vector. 

 void clear()-Removes all of the elements from this vector. 

 Object clone()-Returns a clone of this vector. 

12 

6M 

 

 

 

 

Any 6 

methods 

with 

their use 

1M each 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 17 / 23 
 

22412 

 boolean contains(Object elem)-Tests if the specified object is a 

component in this vector. 

 void copyInto(Object[] anArray)-Copies the components of this 

vector into the specified array. 

 Object firstElement()-Returns the first component (the item at 

index 0) of this vector. 

 Object elementAt(int index)-Returns the component at the 

specified index. 

 int indexOf(Object elem)-Searches for the first occurence of the 

given argument, testing for equality using the equals method. 

 Object lastElement()-Returns the last component of the vector. 

 Object insertElementAt(Object obj,int index)-Inserts the specified 

object as a component in this vector at the specified index. 

 Object remove(int index)-Removes the element at the specified 

position in this vector. 

 void removeAllElements()-Removes all components from this 

vector and sets its size to zero. 

 b) 

 

Ans. 

Explain the concept of Dynamic method dispatch with suitable 

example. 

Method overriding is one of the ways in which Java supports Runtime 

Polymorphism. Dynamic method dispatch is the mechanism by which 

a call to an overridden method is resolved at run time, rather than 

compile time. 

When an overridden method is called through a superclass reference, 

Java determines which version (superclass/subclasses) of that method 

is to be executed based upon the type of the object being referred to at 

the time the call occurs. Thus, this determination is made at run time. 

At run-time, it depends on the type of the object being referred to (not 

the type of the reference variable) that determines which version of 

an overridden method will be executed 

A superclass reference variable can refer to a subclass object. This is 

also known as upcasting. Java uses this fact to resolve calls to 

overridden methods at run time. 

If a superclass contains a method that is overridden by a subclass, 

then when different types of objects are referred to through a 

superclass reference variable, different versions of the method are 

executed. Here is an example that illustrates dynamic method 

dispatch: 

6M 

 

 

 

 

 

 

Explana

tion 3M  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 18 / 23 
 

22412 

/ A Java program to illustrate Dynamic Method  

// Dispatch using hierarchical inheritance  

class A  

{  

    void m1()  

   {  

        System.out.println("Inside A's m1 method");  

    }  

}  

class B extends A  

{  

    // overriding m1()  

    void m1()  

    {  

        System.out.println("Inside B's m1 method");  

    }  

}  

class C extends A  

{  

    // overriding m1()  

    void m1()  

    {  

        System.out.println("Inside C's m1 method");  

    }  

}  

   

// Driver class  

class Dispatch  

{  

    public static void main(String args[])  

    {  

        // object of type A  

        A a = new A();  

   

        // object of type B  

        B b = new B();  

   

        // object of type C  

        C c = new C();  

 

 

 

 

 

 

 

 

 

 

 

Example 

3M 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 19 / 23 
 

22412 

        // obtain a reference of type A  

        A ref;  

           

        // ref refers to an A object  

        ref = a;  

   

        // calling A's version of m1()  

        ref.m1();  

   

        // now ref refers to a B object  

        ref = b;  

   

        // calling B's version of m1()  

        ref.m1();  

   

        // now ref refers to a C object  

        ref = c;  

   

        // calling C's version of m1()  

        ref.m1();  

    }  

}  

 

Output: 

Inside A’s m1 method 

Inside B’s m1 method 

Inside C’s m1 method 

Explanation:  

The above program creates one superclass called A and it’s two 

subclasses B and C. These subclasses overrides m1( ) method. 

1. Inside the main() method in Dispatch class, initially objects of 

type A, B, and C are declared. 

2. A a = new A(); // object of type A 

3. B b = new B(); // object of type B 

      C c = new C(); // object of type C 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 20 / 23 
 

22412 

 c) 

 

 

Ans. 

Write a program to create two threads. One thread will display 

the numbers from 1 to 50 (ascending order) and other thread will 

display numbers from 50 to 1 (descending order). 

class Ascending extends Thread  

{ 

  public void run() 

 { 

   for(int i=1; i<=15;i++) 

 { 

   System.out.println("Ascending Thread : " + i); 

  } 

 } 

} 

 

class Descending extends Thread  

{ 

 public void run() 

 { 

  for(int i=15; i>0;i--) { 

   System.out.println("Descending Thread : " + i); 

  } 

 } 

} 

 

public class AscendingDescending Thread  

{  

 public static void main(String[] args)  

{   

Ascending a=new Ascending(); 

a.start(); 

Descending d=new Descending(); 

d.start(); 

 } 

} 

6M 

 

 

 

 

 

 

 

 

Creation 

of two 

threads  

4M 

 

Creating 

main to 

create 

and start 

objects 

of 2 

threads: 

2M 

6.  

a) 

Ans. 

Attempt any TWO of the following: 

Explain the command line arguments with suitable example. 

Java Command Line Argument:  

The java command-line argument is an argument i.e. passed at the 

time of running the java program. 

12 

6M 

 

 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 21 / 23 
 

22412 

The arguments passed from the console can be received in the java 

program and it can be used as an input. 

So, it provides a convenient way to check the behaviour of the 

program for the different values. You can pass N (1,2,3 and so on) 

numbers of arguments from the command prompt. 

 

Command Line Arguments can be used to specify configuration 

information while launching your application. 

There is no restriction on the number of java command line 

arguments. 

You can specify any number of arguments 

Information is passed as Strings. 

They are captured into the String args of your main method 

 

Simple example of command-line argument in java 

 

In this example, we are receiving only one argument and printing it. 

To run this java program, you must pass at least one argument from 

the command prompt. 

 

class CommandLineExample 

{   

public static void main(String args[]){   

System.out.println("Your first argument is: "+args[0]);   

}   

}   

compile by > javac CommandLineExample.java   

run by > java CommandLineExample sonoo   

 

 

 

 

 

4M for 

explanat

ion   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2M for 

example 

 b) 

 

Ans. 

Write a program to input name and salary of employee and 

throw user defined exception if entered salary is negative.                       

import java.io.*; 

class NegativeSalaryException extends Exception  

{ 

 public NegativeSalaryException (String str) 

 { 

 super(str); 

 } 

} 

public class S1 

6M 

 

 

Extende

d 

Exceptio

n class 

with 

construc

tor 2M 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 22 / 23 
 

22412 

{ 

 public static void main(String[] args) throws IOException 

 { 

BufferedReaderbr= new BufferedReader(new 

InputStreamReader(System.in)); 

  System.out.print("Enter  Name of employee"); 

  String name = br.readLine(); 

System.out.print("Enter  Salary of employee"); 

  int  salary = Integer.parseInt(br.readLine()); 

   Try 

 { 

   if(salary<0)  

throw new NegativeSalaryException("Enter Salary amount 

isnegative"); 

System.out.println("Salary is "+salary); 

} 

  catch (NegativeSalaryException a) 

 { 

   System.out.println(a); 

  } 

 } 

} 

 

 

Acceptin

g data  

1M 

 

 

 

Throwin

g user 

defining 

Exceptio

n with 

try catch 

and 

throw 

 3M 

 c) 

Ans. 

Describe the applet life cycle in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

Below is the description of each applet life cycle method: 

init(): The init() method is the first method to execute when the 

applet is executed. Variable declaration and initialization operations 

6M 

 

 

 

 

2M 

Diagram 

 

 

 

 

 

 

 

 

 

 



 

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION 

(Autonomous) 

(ISO/IEC - 27001 - 2005 Certified) 

SUMMER – 2019 EXAMINATION 

MODEL ANSWER 

Subject: Java Programming              Subject Code: 

Page 23 / 23 
 

22412 

 

 

are performed in this method. 

 

start(): The start() method contains the actual code of the applet that 

should run. The start() method executes immediately after 

the init() method. It also executes whenever the applet is restored, 

maximized or moving from one tab to another tab in the browser. 

 

stop(): The stop() method stops the execution of the applet. The 

stop() method executes when the applet is minimized or when 

moving from one tab to another in the browser. 

 

destroy(): The destroy() method executes when the applet window is 

closed or when the tab containing the webpage is 

closed. stop() method executes just before when destroy() method is 

invoked. The destroy() method removes the applet object from 

memory. 

 

paint(): The paint() method is used to redraw the output on the applet 

display area. The paint() method executes after the execution 

of start() method and whenever the applet or browser is resized. 

The method execution sequence when an applet is executed is: 

 init() 

 start() 

 paint() 

 The method execution sequence when an applet is closed is: 

 stop() 

 destroy() 

 

 

4M 

descripti

on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


