

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

<u>MODEL ANSWER</u> WINTER– 18 EXAMINATION

Subject Title: Digital Techniques

Subject Code:

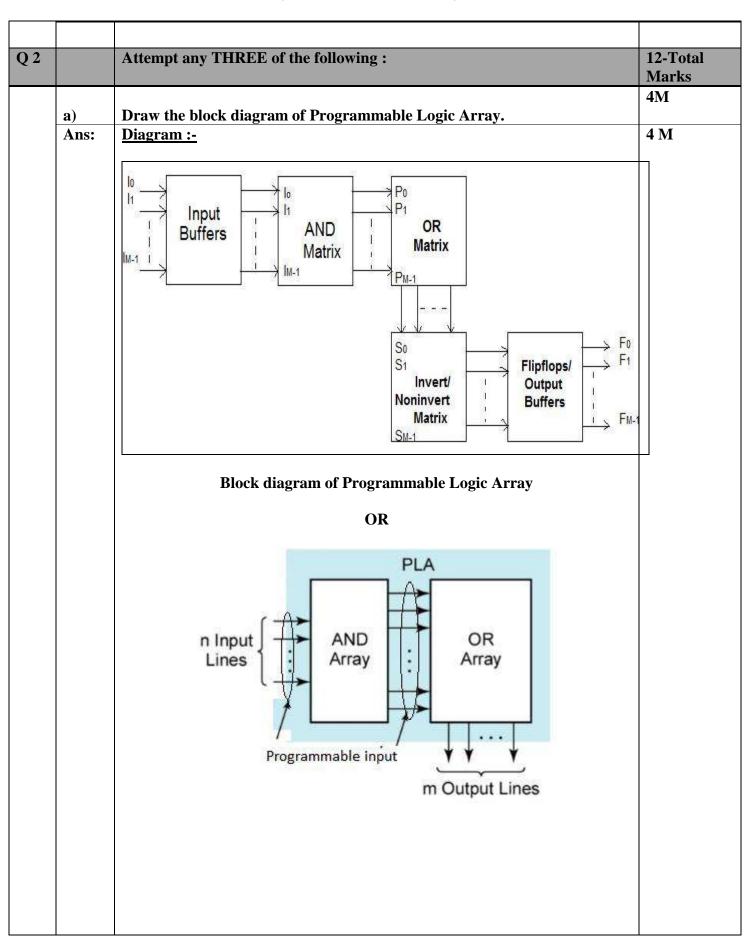
22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1		Attempt any FIVE of the following:	Total Marks 10
	a)	Write the radix of binary,octal,decimal and hexadecimal number system.	2M
	Ans:	Radix of: Binary – 2 Octal - 8 Decimal - 10	½ M each
		Hexadecimal -16	
	b)	Draw the circuit diagram for AND and OR gates using diodes.	2M
	Ans:	Diode AND gate :Diode OR gate :	1 M each

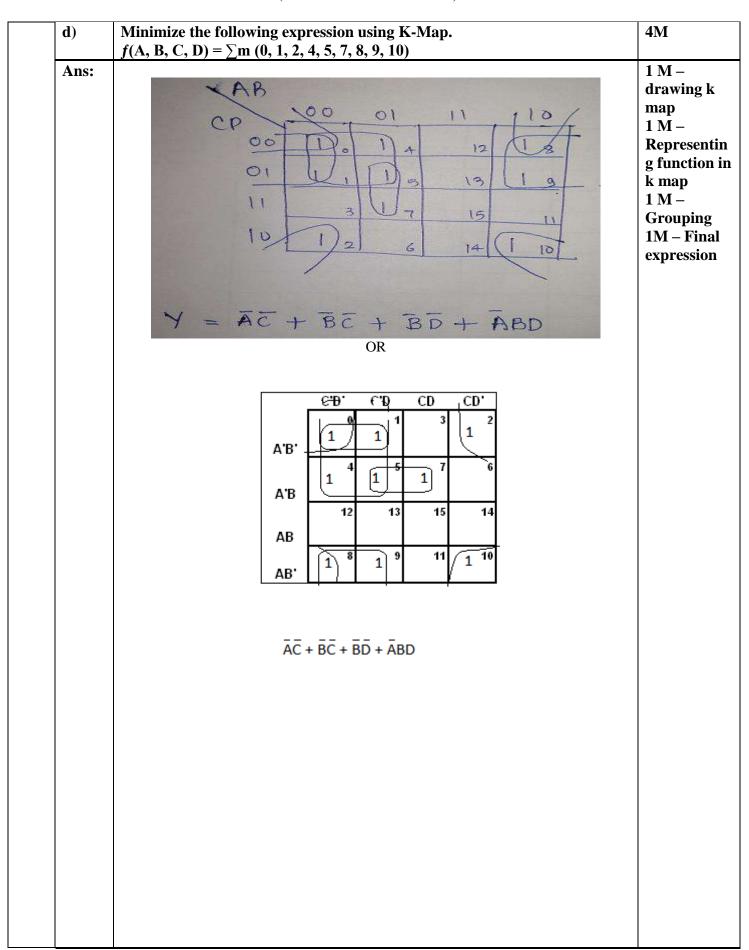
c)	Write simple example of Boolean expression for SOP and POS.	2M	
Ans:	$\frac{SOP \text{ form:}}{Y = AB + BC + A\overline{C}}$	1 M each (any proper example car	
	POS form:	be considered)	
	$Y = (A + B) (B + C) (A + \overline{C})$		
d)	State the necessity of multiplexer.	2M	
Ans:	Necessity of Multiplexer:		
	It reduces the number of wires required to pass data from source to destination.	2 M(any two proper points)	
	For minimizing the hardware circuit.		
	For simplifying logic design.		
	• In most digital circuits, many signals or channels are to be transmitted, and then it becomes necessary to send the data on a single line simultaneously.		
	 Reduces the cost as sending many signals separately is expensive and requires more wires to send. 		
e)	Draw logic diagram of T flip-flop and give its truth table.	2M	
Ans:	Note: Diagram Using logic gates with proper connection also can be consider. Logic Diagram:	1M (any on diagram)	
	Pr		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	\bar{Q}	1 M	
	OR OR		
	SI CON		



		Input T _n	Output Q _{n+1}	Operation Performed				
		0	Qn	No change				
		1	$\overline{\overline{Q}}_n$	Toggle				
f)		modulus of a	counter. Write the n	umbers of flip flops required for	2M			
Ans:	Modulus of counter is defined as number of states/clock the counter countes.							
	•	The numbers	of flip flops required f	or Mod-6 counter is 3.	No. of FF- 1M			
g)	State fu	ınction of pr	eset and clear in flip f	lop.	2M			
	• Hence, the function of preset is to set a flip flop i.e. Q = 1 and the function of clear is to clear a flip flop i.e. Q = 0.							
		27 17	Output	Operation performed				
		Inputs		Operation performed				
	CK 1	Cr P	e Q	(2) B				
	CK 1 0	- 15 102	e Q	Normal FLIP-FLOP Clear				
	1	Cr P	Q $Q_{a+1}(\text{Table 7.1})$ 0	Normal FLIP-FLOP				
	1 0	Cr P	Q $Q_{a+1}(\text{Table 7.1})$ 0	Normal FLIP-FLOP Clear				

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)



b)	Convert – $(255)_{10} = (?)_{16} = (?)_8$	4M
Ans:	(157) ₁₀ = (?) _{BCD} = (?) _{Excess3} (i) (255) ₁₀ = (FF) ₁₆ = (377) ₈ (255) ₁₀ = (FF) ₁₆ $16 \mid 255 \mid F \mid$	1 M
	$(255)_{10} = (377)_{8}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 M
	(ii) $(157)_{10} = (000101010111)_{BCD} = (010010001010)_{Excess3}$	
	$(157)_{10} = (000101010111)_{BCD}$ $\frac{1}{0001} \frac{5}{0101} \frac{7}{0111}$	1 M
	(000101010111) _{BCD} = (010010001010) _{Excess3} 11 111 111 0001 0101 0111 + 0011 0011	1 M
c)	Draw the symbol, truth table and logic expression of any one universal logic gate. Write reason why it is called universal gate.	4M
Ans:	(Note: Any one universal gate has to be considered.) Universal Gates: NAND or NORSymbol:	1 M
	Truth table: A B Y O O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 0 D 1 O O 0 D 1 O O O O O O O O O O O O O O O O O O	1 M
	$Y = \overline{A \cdot B}$ $Y = (\overline{A + B})$	1 M
	NAND and NOR gates are called as "Universal Gate" as it is possible to implement any Boolean expression using these gates.	1 M

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)

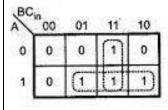
(ISO/IEC - 27001 – 2013 Certified)

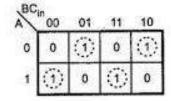
Q. 3		Attempt any THREE:			12-Total
	a)	Compare TTL and CM (i) Propagation (ii) Power Dissi (iii) Fan-out (iv) Basic gate	•	pasis of following:	Marks 4M
	Ans:	<u>NOTE :- (Rel</u>	levant points of comparison- 1	M for each point)	1 Marks
		Parameter	CMOS	TTL	each point
		Propagation delay	70-105 nsec/more than TTL	10 nsec/Less than CMOS	
		Power Dissipation	Less 0.1 mW/Less than TTL	More 10 mW/ More than CMOS	
		Fan-out	50/More than TTL	10/Less than CMOS	
		Basic gate	NAND/NOR	NAND	
=	b)	Describe the function simplification and logi	of full Adder Circuit using	its truth table, K-Map	4M
		Block diagram : FULL ADDER	bits A and B, and carry C for Cour	tom the previous oit.	1M
					1M

(Autonomous) (ISO/IEC - 27001 – 2013 Certified)

Truth Table:

	Input		Out	put
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

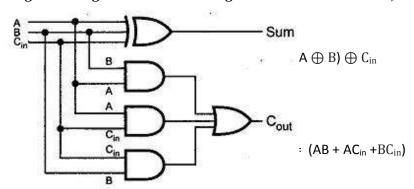

1M


1M

K-Map :-

For Carry (Cout)

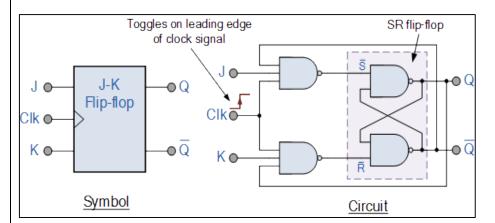
For Sum



 $C_{out} = AB+A C_{in}+B C_{in}$ Sum = $\overline{A} \overline{B} C_{in}+\overline{A} \overline{B} \overline{C}_{in}+A \overline{B} \overline{C}_{in}+AB C_{in}$

Logic Diagram:

(Note: Logic Diagram using basic or universal gate also can be consider)



c)	Realize the basic logic gates, NOT, OR and AND gates using NOR gates only.	4M				
Ans:		13.7				
	(NOT GATE USING NOR GATE:1 M)	1M				
	A————×					
	where, $X = A$ NOR A $x = \overline{A}$					
	(AND GATE USING NOR GATE:1.5 MARKS)					
		1.5M				
	$\overline{Q} = \overline{A} + \overline{B} = \overline{A} + \overline{B}$					
	=A.B = A.B					
	(OR GATE USING NOR GATE:1.5 MARKS)					
	$Q = \overline{A + B}$					
	$=\mathbf{A}+\mathbf{B}$					
d)	Describe the working of JK flip-flop with its truth table and logic diagram.	4M				
Ans:	(Diagram-2 M, Working-1M, Truth table-1M)					
	Truth Table :-	1M				
	Truth Table					
	J K CLK Q					
	0 0 † Q ₀ (no change)					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

 $\begin{array}{c} (Autonomous) \\ (ISO/IEC - 27001 - 2013 \; Certified) \end{array} \\$

Diagram:-

2M

Working:-

The **JK flip flop** is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level "1". Due to this additional clocked input, a JK flip-flop has four possible input combinations, "logic 1", "logic 0", "no change" and "toggle".

1M

Both the S and the R inputs of the previous SR bistable have now been replaced by two inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then this equates to: J = S and K = R.

The two 2-input AND gates of the gated SR bistable have now been replaced by two 3-input NAND gates with the third input of each gate connected to the outputs at Q and Q. This cross coupling of the SR flip-flop allows the previously invalid condition of S = "1" and R = "1" state to be used to produce a "toggle action" as the two inputs are now interlocked.

If the circuit is now "SET" the J input is inhibited by the "0" status of Q through the lower NAND gate. If the circuit is "RESET" the K input is inhibited by the "0" status of Q through the upper NAND gate. As Q and Q are always different we can use them to control the input. When both inputs J and K are equal to logic "1", the JK flip flop toggles

Q. 4	A)	Attempt any THREE of the following:	12-Total Marks
	a)	Draw and explain working of 4 bit serial Input parallel Output shift	4M
		register.	
	Ans:	(Diagram:2M,Explaination:2M)	
		Diagram :-	
		4-bit Parallel Data Output	2M
		Q_A Q_B Q_C Q_D	
		Serial D C Q	
		Data in FFA FFB FFC FFD	
		CLK CLK CLK	
		CLR CLR CLR	
		Clear	
		Clock	
		Explaination:-	
		If a logic "1" is connected to the DATA input pin of FFA then on the first	
		clock pulse the output of FFA and therefore the resulting Q _A will be set HIGH	2M
		to logic "1" with all the other outputs still remaining LOW at logic "0". Assume now that the DATA input pin of FFA has returned LOW again to logic	2111
		"0" giving us one data pulse or 0-1-0.	
		The second clock pulse will change the output of FFA to logic "0" and the	
		output of FFBand Q _B HIGH to logic "1" as its input D has the logic "1" level	
		on it from Q _A . The logic "1" has now moved or been "shifted" one place along	
		the register to the right as it is now at Q _A .	
		When the third clock pulse arrives this logic "1" value moves to the output	
		of FFC (Q_C) and so on until the arrival of the fifth clock pulse which sets all the outputs Q_A to Q_D back again to logic level "0" because the input	
		to FFA has remained constant at logic level "0".	
		The effect of each clock pulse is to shift the data contents of each stage one	
		place to the right, and this is shown in the following table until the complete	
		data value of 0-0-0-1 is stored in the register. This data value can now be read	
		directly from the outputs of Q_A to Q_D .	
		Then the data has been converted from a serial data input signal to a parallel data output. The truth table and following waveforms show the propagation of	
		the logic "1" through the register from left to right as follows.	
		Basic Data Movement Through A Shift Register	

	Clock Pulse No	QA	QB	QC	QD		
	0	0	0	0	0		
	1	1	0	0	0		
	2	0	1	0	0		
	3	0	0	1	0		
	4	0	0	0	1		
	5	0	0	0	0		
		<u> </u>	1	1	1	ı	
b) Draw 16:1 MU	JX tree using 4:1	MUX.					4M
10	4X1 MUX S1 S0 4X1 MUX S1 S0 4X1 MUX S1 S0			4X1 MUX S3 S2		Output (f)	4M

c)	Calculate analog output of 4 bit DAC for digital input 1101. Assume $V_{\rm FS} = 5V$.	4M
Ans:	(Formula- 1M, Correct problem solving- 3M)	
	Formula :-	1M
	$V_R = V_{FS}$	
	$V_o = V_R [d_1 2^{-1} + d_2 2^{-2} + + d_n 2^{-n}]$	3M
	$= 5(1x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4})$ $= 5(0.5 + 0.25 + 0 + 0.0625)$ $= 4.0625 \text{ Volts}$	
	OR	
	$V_{FS} = V_R \cdot \left(\frac{b3}{2} + \frac{b2}{4} + \frac{b1}{8} + \frac{b0}{16} \right)$	
	Note – (Since V_R is not given find V_R)	2 Marks for V _R and 2
	Full Scale o/p mean	marks for V _o
	b3 b2 b1 b0 = 1111	
	$V_{FS} = 5V$	
	$5 = V_R \cdot \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\right)$	
	$V_R = 5.33$	
	For digital i/p b3 b2 b1 b0 = 1101	
	$V_0 = 5.33 \left(\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16} \right)$	
	$\mathbf{V}_0 = \mathbf{4.33V}$	
d)	State De Morgan's theorem and prove any one.	4M
Ans:	(Each State and proof using table- 2M each)	
		2M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

i) $\overline{AB} = \overline{A} + \overline{B}$

It states that compliment of product is equal to sum of their compliments.

1	2	3	4	5	6
A	В	\overline{AB}	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Column 03 = column 06

i.e. $\overline{AB} = \overline{A} + \overline{B}$

Hence proved

OR

ii) $\overline{A+B} = \overline{A} \cdot \overline{B}$

It states that complement of sum is equal to product of their complements.

			1 1		
1	2	3	4	5	6
A	В	$\overline{A+B}$	\overline{A}	\overline{B}	$\overline{A} \cdot \overline{B}$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

Column 03 = column 06

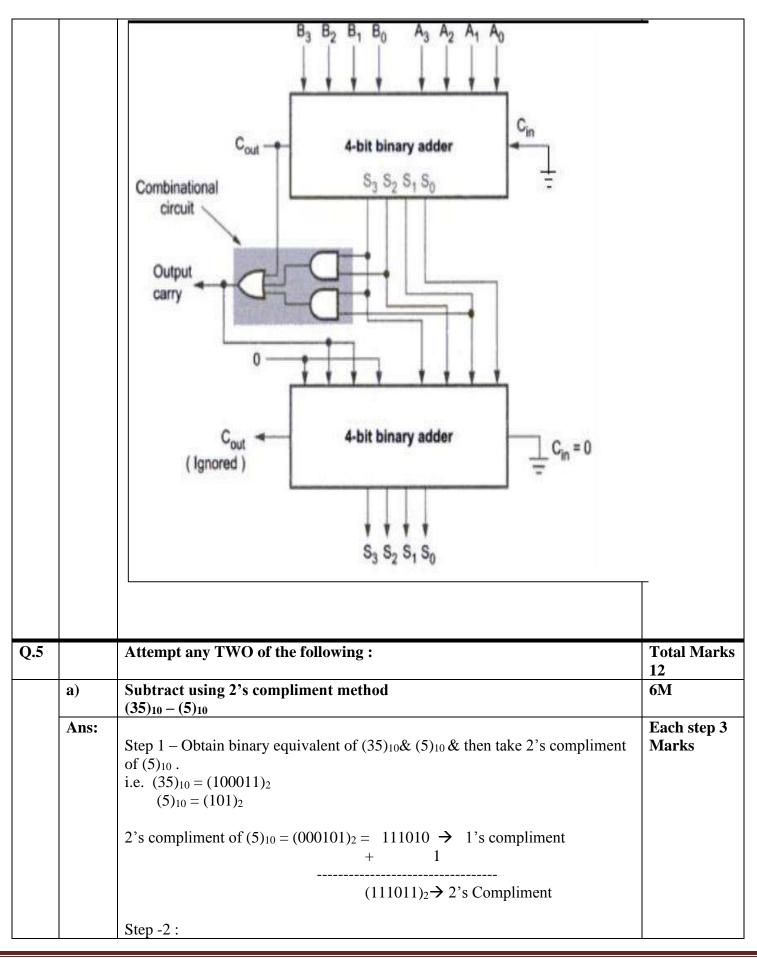
Design one digit BCD Adder using IC 7483

$$\therefore \overline{A+B} = \overline{A} \cdot \overline{B}$$

Hence proved.

Ans:	(Diagram:4M)	

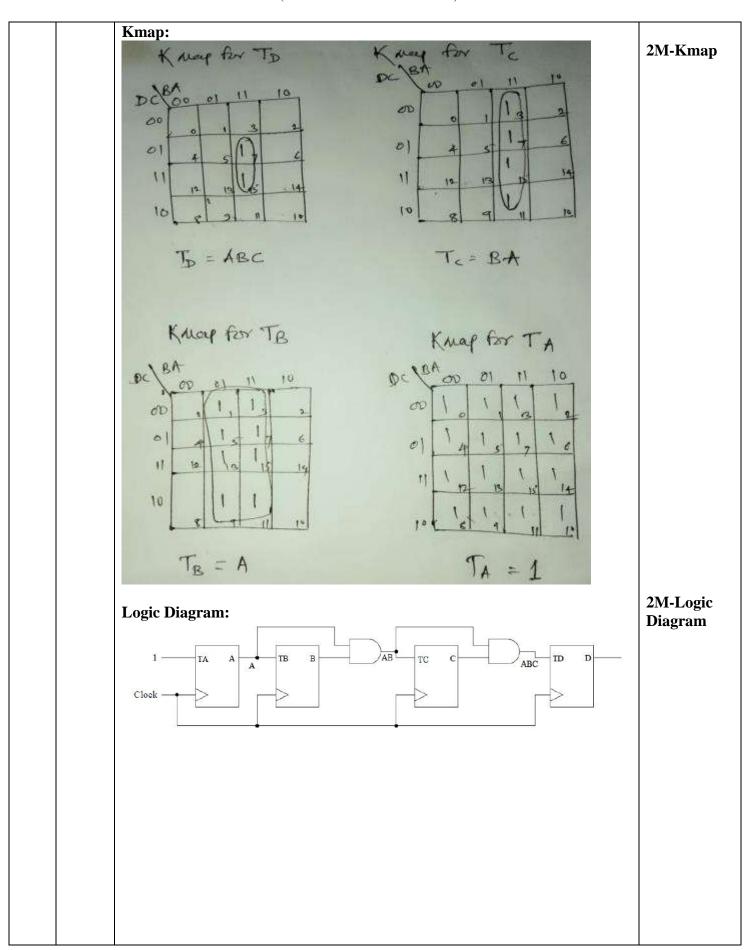
(Note: Labeled combinational circuit can be drawn using universal gate also)


4M

2M

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)

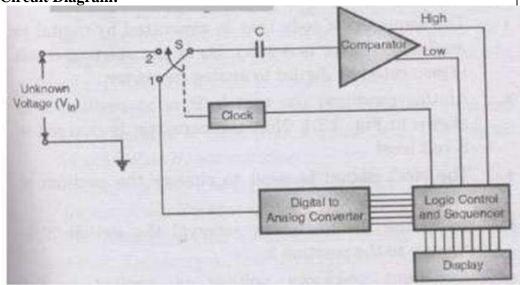
(ISO/IEC - 27001 – 2013 Certified)



				1110:)1111										
		_1				y is ge	nerate	d so a	nswer	is in p	ositive	e form	, so will	
	discar			y gen	nerate	ed				1				
	There	fore	final	ansv	ver w	vill be	(0111	10)2 =	$(30)_2$					
b)				syncl	aron	ous co	unter	and o	lraw i	ts logi	c diag	ram.		6M
Ans:	State				2607						1: 0	00 - • 00 00 00 00 00 00 00 00 00 00 00 00 0		
				nt stat		D+		state	_ <u> </u>	E		p inpu		
	,	D 0	C 0	В	A	D+ 0	C+ 0	B+ 0	A ⁺	T _D	T _C	T _B	TA	
Ì	2	0	0	0	0	0	0	1	0	0	0	1	1	
	-	0	0	1	0	0	0	1	1	0	0	0	1	2M-Sta
		0	0	1	1	0	1	0	0	0	1	1	1	table
		0	1	0	0	0	1	0	1	0	0	0	1	
	23	0	1	0	1	0	1	1	0	0	0	1	1	
	3	0	1	1	0	0	1	1	1	0	0	0	1	
	3	0	1	1	1	1	0	0	0	1	1	1	1	
		1	0	0	0	1	0	0	1	0	0	0	1	
	}	1	0	0	1	1	0	1	0	0	0	1	1	
		1	0	1	0	1	0	1	1	0	0	0	1	
		1	0	1	1	1	1	0	0	0	1	1	1	
		1	1	0	0	1	1	0	1	0	0	0	1	
		1	1	0	1	1	1	1	0	0	0	1	1	
	1	1	1	1	0	1	1	1	1	0	0	0	1	
		1	1	1	1	0	0	0	0	1	1	1	1	

(Autonomous) (ISO/IEC - 27001 – 2013 Certified)

c)	Describe the working of Successive Approximation ADC. Define	6M
Δng·	Resolution and conversion time associate with ADC.	
Ans:	Circuit Diagram: Voltage comparator Control circuit NSB Successive Approximation Register Output buffer register	2 Marks Diagram
	When the start signal goes low the successive approximation register SAR is cleared and output voltage of DAC will be 0V. When start goes high the conversion starts.	2 Marks Explanation
	After starts, during first clock pulse the control circuit set MSB bit so	
	SAR output will be 1000 0000. This is connected as input to DAC so output of	
	DAC is (analog output) compared with V_{in} input voltage. If V_{DAC} is more than	
	V_{in} the comparator output $-V_{sat}$, if V_{DAC} is less than V_{in} , the comparator output	
	is $+V_{sat}$. If output of DAC i.e. V_{DAC} is $+V_{sat}$ (i.e unknown analog input voltage $V_{in} > V_{DAC}$) then MSB bit is kept set, otherwise it is reset.	1 Marks Each
	Consider MSB is set so SAR will contain 1000 0000.	
	The next clock pulse will set next bit i.e D_6 a digital output of 1100 0000. The	
	output voltage of DAC i.e V_{DAC} is compared with V_{in} , if it is + V_{sat} the D_6 bit is	
	kept as it is, but if it is $-V_{sat}$ the D_6 bit reset.	
	The process of checking and taking decision to keep bit set or to reset is continued upto D_0 .	
	Then the DAC input will be digital data equal to analog input.	
	When the conversation if finished the control circuits sends out an end	
	of conversion signal and data is locked in buffer register	


(ISO/IEC - 27001 - 2013 Certified)

Resolution: The voltage input change necessary for a one bit change in the output is called resolution.

Conversion Time: The conversion time is the time required for conversion from an analog input voltage to the stable digital output

OR

Circuit Diagram:

2 Marks Diagram

Explanation:

DAC= Digital to Analog converter

EOC= End of conversion

SAR =Succesive approximation register

S/H= Sample and hold circuit

Vin= input voltage

Vref= reference voltage

The successive approximation Analog to Digital converter circuit typically consisting of four sub circuits-

- 1. A sample and hold circuit to acquire the input voltage Vin.
- 2. An analog voltage comparator that compares Vin to the output of internal DAC and outputs the result of comparison to successive approximation register(SAR).
- 3. SAR sub circuits designed to supply an approximate digital code of Vin to the internal DAC.
- 4. An internal reference DAC that supplies the comparator with an analog voltage equivalent of digital code output of SAR for comparison with Vin.

The successive approximation register is initialized so that most significant bit (MSB) is equal to digital 1. This code is fed into DAC which the supplies the analog equivalent of this digital code Vref/2 into the comparator circuit for the comparison with sampled input voltage. If this analog voltage exceeds Vin the comparator causes the SAR to reset the bit, otherwise a bit is left as 1. Then the

2 Marks Explanation

(Autonomous) (ISO/IEC - 27001 – 2013 Certified)

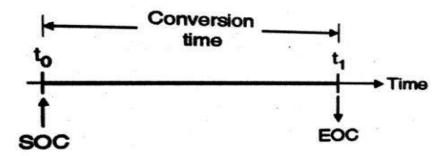
next bit is set to 1 and the same test is done continuing this binary search until every bit in the SAR has been tested. The resulting code is the digital approximation of the sampled input voltage and is finally output by DAC at end of the conversion (EOC).

Resolution and conversion time associate with ADC-

Resolution:

It is the maximum number of digital output codes.

Resolution= 2^n


(OR)

It is defined as the ratio of change in the value of input analog voltage required to change the digital output by 1 LSB.

$$\therefore \text{ Resolution } = \frac{V_{FS}}{2^n - 1}$$

Conversion time:

The time difference between two instants i.e. 'to' where SOC signal is given as input to the ADC and 't1' where EOC signal we get as output from ADC. it should be small as possible.

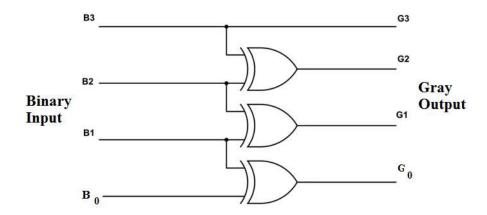
1 Marks each

Q.6		Attempt	any TWO of	f the followin	ng:				Total Marks 12
	a)	Design 4	bit Binary to	o Gray code	conv	erter.			6M
	Ans:	Truth Tab	ole for 4 bit B		y code				2M for truth table
			Binary Inp				y output		
			B ₂ B ₁	Bo	G ₃	G ₂	G ₁	Go	1/2m for
		0 0		0	0	0	0	0	each output
		0 0		1	0	0	0	1	equation 2M for
		0 0		0	0	0	1	1	realization
		0 0		1	0	0	1	0	using gates
		$\begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix}$		0	0	1	1	0	using gates
		0 1		1	0	1	1	1	
		$\begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix}$		0	0	1	0	1	
		0 1		1	0	1	0	0	
		$\begin{array}{ c c c c c } \hline 1 & 0 \\ \hline \end{array}$		0	1	1	0	0	
		$\begin{array}{ c c c c }\hline 1 & 0 \\\hline 1 & 0 \\\hline \end{array}$		0	1	1	0	1	
		$\begin{array}{ c c c c }\hline 1 & 0 \\\hline 1 & 0 \\\hline \end{array}$		1	1 1	1 1	1 1	0	
		$\begin{array}{ c c c c c }\hline 1 & 0 \\\hline 1 & 1 \\\hline \end{array}$		0	1	0	1	0	
		$\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$		1	1	0	1	1	
		$\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$		0	1	0	0	1	
		$\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$		1	1	0	0	0	
		\	FOR G3: 180 ₀₀	01		11	10		
		63B2 OC	0	0		0	0		
		01	0	0		0	0		
		11	1	1		1	1		
		10	1 1	1		1	1		
		G3=B3		1		1	1		

					_
B1B B3B2	0 00	01	[.] 11	10	
00	0	0	0	0	
01	1	1	1	1	
11	0	0	0	0	
10	1	1	1	1	
K-MAP FO G2=B3 B2- = B3 XOR I K-MAP FO	+ B2 B3				
B1E		01	11	10	
B3B2 00	0	0	1	1	
01	1	1	0	0	
11	1	1	0	0	
10	0	0	1	1	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

 $G1=\overline{B2}B1+B2\overline{B1}$


= B1 XOR B2

K-MAP FOR G0:

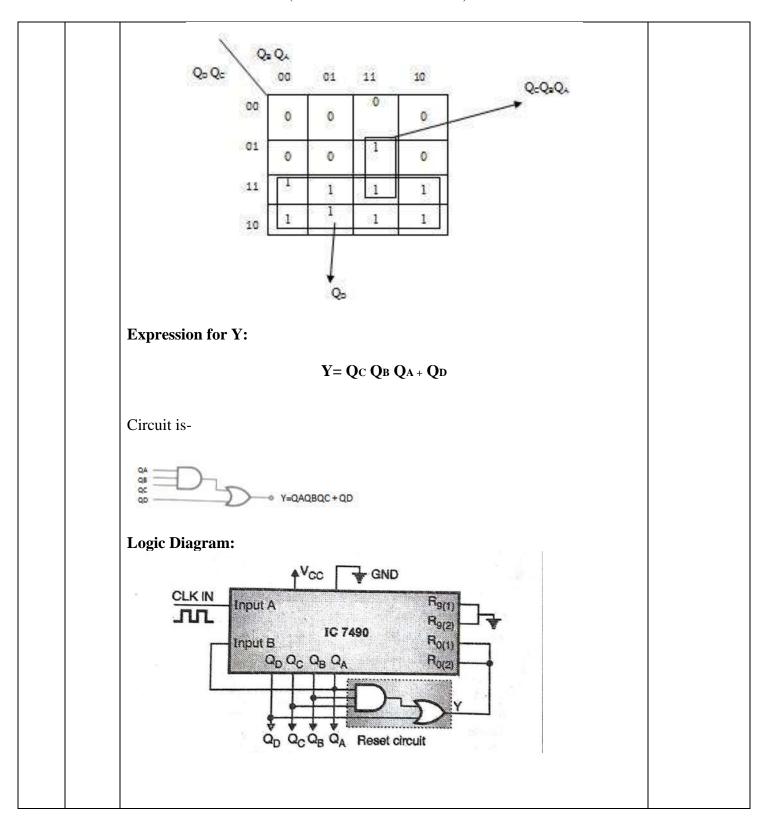
B1E B3B2	80 00	01	11	10	
00	0	1	0	1	
01	0	1	0	1	
11	0	1	0	1	
10	0	1	0	1	

G0=B1B0 + B1B0 = B1 XOR B0

Diagram for 4 bit Binary to Gray code converter:

Note: Realization of output equations can be done using Basic or Universal gates

Ans:				
	Parameter	Volatile memory	Non-Volatile memory]
	definition	Memory required electrical power to keep information stored is called volatile memory	Memory that will keep storing its information without the need of electrical power is called nonvolatile memory.	Any 3points (each 1 mark)
	classification	All RAMs	ROMs, EPROM, magnetic memories	-
	Effect of power	Stored information is retained only as long as power is on.	No effect of power on stored information	
	applications	For temporary storage	For permanent storage of information	
	Parameter Circuit configuration	SRAM Each SRAM cell is	DRAM Each cell is one	
	Circuit configuration	Each SRAM cell is	Each cell is one	
	Bits stored	a flip flop In the form of voltage	MOSFET & a capacitor In the form of charges	
	No of components per cell	More	Less	
	Storage capacity	Less	More	
	Refreshing	It does not require refreshing	It require refreshing.	
	Cost	It is expensive	It is cheaper	
	Speed	It is faster	It is slower comparatively	



Ans:	using this		natic of d	lecade cou	inter IC	7490. Desigi	1 Mod-7 cou	nter	6M
			ematic of	decade co	ounter IC	C 7490-			2M block
	Therefore Design res Output of	ans states we have set logic: reset circ	MOD - 2 Output s are from to reset couit should	o,1,2,3,4,5, unter IC 74	3 Flip-flops MOD - 5 Out 66,0 190 when	R _{B(2)} + gating counter Q _D ,Q _C ,Q _B ,Q _A Q(1) and RO(2	GND =0111	gh inputs.	
	Output s Truth tal			for states '	7 onward	ls.			
	Truth tal	ble & K	-map:		1000	ls. 1			
				for states '	7 onward	ls.			
	Truth ta	ble & K	-map:	Q.	Y	ls.			Truth
	Truth tal	Qe 0	-map:	Q. 0	Y 0	ls.			Table-1M Kmap-1M
	Truth tal	Qe 0	-map:	Q. 0	Y 0	ls.			Table-1M Kmap-1M Logical D
	Truth tal	Qc 0	-map: Q= 0 0 1	Qx 0 1 0	Y 0 0	ls.			Table-1M Kmap-1M
	Truth tal	Qc 0	-map: Q _a	Q ₄ 0 1 0 1	Y 0 0 0 0	ls.			Table-1M Kmap-1M Logical D
	Truth tal	Qc 0 0 0 0 1	-map: Qa 0 0 1 1	Q _A 0 1 0 1 0 0	Y 0 0 0 0 0 0 0	ls.			Table-1M Kmap-1M Logical D
	Truth tal	Qc 0 0 0 1 1 1	-map: Q= 0 0 1 1 0 0	Q ₄ 0 1 0 1 0 1 1	Y 0 0 0 0 0 0 0 0	ls.			Table-1M Kmap-1M Logical D
	Truth tal	Qc 0 0 0 1 1 1 1	-map: Qa 0 0 1 1 0 0 1	Q. 0 1 0 1 0 1 0 0	Y 0 0 0 0 0 0 0 0	ls.	Searce		Table-1M Kmap-1M Logical D

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 – 2013 Certified)

