Scheme - I

Sample Question Paper

Program Name : Digital Electronics, Medical Electronics and Instrumentation

Engineering Program Group

Program Code : DE/IE/IS/IC/MU

Semester : Third

Course Title : Electronic Instruments and Measurement

Marks : 70 Time: 3 Hrs.

Instructions:

(1) All questions are compulsory.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1) Attempt any FIVE of the following.

10 Marks

22331

- a) State different types of standards.
- b) Write the function of delay line in CRO.
- c) State the features of digital meter (any two).
- d) Define Calibration.
- e) Identify the parameter measured by the given instruments:
- i) LUX meter, ii) LCR meter, iii) DFM, iv) DVM.
- f) State the condition for balancing Wheatstone bridge..
- g) Write any two uses of AC bridge.

Q.2) Attempt any THREE of the following.

12 Marks

- a) Explain the block diagram of measurement system with suitable sketch.
- b) Write steps to convert PMMC instrument to measure the current with neat diagram.
- c) Compare Analog meter and Digital meters on the basis of
- i) Display,
- ii) Resolution,
- iii) Functions available and
- iv) Power consumption
- d) Explain the working of Maxwell's bridge with neat diagram.

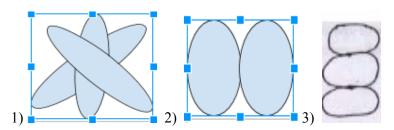
1

Q.3) Attempt any THREE of the following.

12 Marks

- a) Describe construction of PMMC type instrument with neat diagram.
- b) Calculate the resolution and sensitivity of $3\frac{1}{2}$ digital Display.
- c) Explain the procedure for measuring the value unknown capacitance using Schering Bridge.
- d) Explain the different types of errors in measurement.

Q.4) Attempt any THREE of the following.

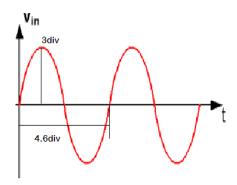

12 Marks

- a) Describe the following terms of voltmeter:
- i) loading effect, ii) sensitivity
- b) Calculate the value of the multiplier resistance on the 50 V range of a dc voltmeter that uses a 200 μ A meter movement with an internal resistance of 100 Ω
- c) Design a multi range DC ammeter using a basic movement with an internal resistance $Rm = 50\Omega$, and a full scale deflection current Im = 1mA. The range required are 0–10 mA, 0–50 mA, 0–100 mA, 0–500 mA, and calculate its sensitivity
- d) Justify the statement:" Digital meters are more advantageous than analog meter." (any four points)
- e) Calculate the resolution and sensitivity of $3\frac{1}{2}$ digital Display.

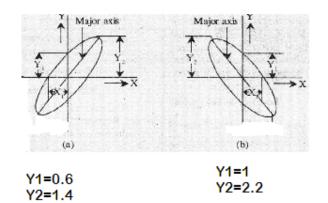
Q.5) Attempt any TWO of the following.

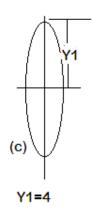
12 Marks

- a) Compare functions of DSO with CRO (any six points)
- b) Find Vertical Frequency when horizontal frequency is 5kHz for the following patterns



c) Describe the principle of operation of LUX meter.


Q.6) Attempt any TWO of the following.


12 Marks

 a) Calculate Voltage and frequency of the given AC Wave where V/Div: 1, time/div: 1ms

- b) Calculate the value of the shunt resistance on the 100mA range of a dc voltmeter that uses a 500 μ A meter movement with an internal resistance of 100 Ω
- c) Calculate phase between frequencies using given figures and data.

Scheme - I

Sample Test Paper - I

Program Name : Digital Electronics, Medical Electronics and Instrumentation

Engineering Program Group

Program Code : DE/IE/IS/IC/MU

Semester : Third

Course Title : Electronic Instruments and Measurement

Marks : 20 Time: 1 Hour

Instructions:

(1) All questions are compulsory.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

(08 Marks)

22331

- a) Give classification of instruments with one example of each
- b) Define unit. Give any two examples
- c) Give specification of Aryton shunt resistors.
- d) Draw the schematic of PMMC Instrument
- e) State the features of digital meter (any four)
- f) Identify the parameter measured by the given instruments:
- i) LUX meter, ii) LCR meter, iii) DFM, iv) DVM

Q.2 Attempt any THREE.

12 Marks)

- a) Distinguish between accuracy and precision with example.
- b) A Wheatstone bridge gives 2.4 mm deflection on galvanometer for 6Watts of input. Determine its sensitivity.
- c) Describe construction of PMMI type instrument with neat diagram
- d) Explain any one type of Ohmmeter with neat sketch.
- e) Explain the block diagram Digital frequency meter
- f) "Digital meters are more advantageous than analog meter." Justify the statement (any four points)

Scheme - I

Sample Test Paper - II

Program Name : Digital Electronics, Medical Electronics and Instrumentation

Engineering Program Group

Program Code : DE/IE/IS/IC/MU

Semester : Third

Course Title : Electronic Instruments and Measurement

Marks : 20 Time: 1 Hour

Instructions:

(1) All questions are compulsory.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (5) Preferably, write the answers in sequential order.

Q.1 Attempt any FOUR.

(08 Marks)

22331

- a) Give specifications of Digital frequency meter.(any four).
- b) Calculate the resolution and sensitivity of $3\frac{1}{2}$ digital Display.
- c) List the applications of CRO (any/four)
- d) Write the function of delay line in CRO.
- e) Condition for balancing Wheatstone bridge
- f) Write the advantages of AC and DC bridge(two each)

Q.2 Attempt any THREE.

(12 Marks)

- a) Write steps to measure phase and frequency with help of CRO.
- b) Compare functions of DSO with CRO (any four points)
- c) Explain the block diagram of spectrum analyser
- d) Explain the working of Maxwell's bridge.
- e) Identify the ac bridge use to measure inductance. Draw its diagram and write the expression to measure unknown inductance
- f) Give one application of the following
- i) Spectrum analyzer, ii) Signal generator iii) DSO iv) Logic analyzer.