Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.		Answers	Marking Scheme
1	(A)	Attempt	any FIVE of the following:	10- Total Marks
	(a)	Define:		2M
		(i) (ii)	Admittance Conductance	
	Ans:	i)	Admittance-:	1 M
		Admittan	nce is defined as the reciprocal of impedance .It is denoted by Y.	for each
		It is giver	n by Y = (1/Z)	definitio
		ii)	Conductance:	n
		Conducta	ance is the ratio of resistance to the square of impedance .It is denoted by G.	
		It is giver	n by G = (R/Z²)	

Subject Name: Electric circuits and network

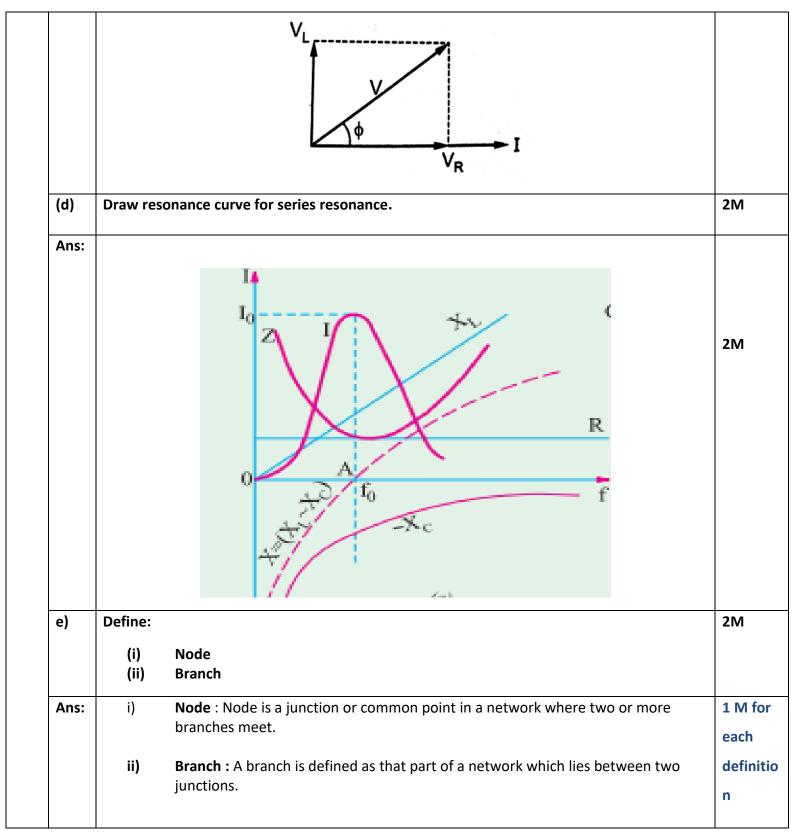
Model Answer Subject Code:

22330

2 (b) Write the equation of open circuit Z parameter. 2M Ans: Solt & The equations for open circuit Z-parameters are $Z_{11} = \frac{V_1}{T_1} - (Ohm^2)$ ½M for Z 21 = 12 1 (ohms) each equatio Z12 = VI - (Ohms) n $Z_{22} = \frac{V_2}{Z_2} \left| z_{1,20} - (ohms) \right|$ Draw phasor diagram for R-L series circuit. (c) 2M Phasor diagram for R-L series circuit. Ans: Phasor diagram: 2M **≻** v Φ

I

(OR)



Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

f)	State Thevenins theorem.	2M
Ans:	Any network containing active and/or passive elements and one or more dependent and/or independent voltage/or current sources can be replaced by an equivalent network containing a voltage source (Thevenin's equivalent voltage V_{TH} or V_{OC}) and a series resistance (called Thevenin's equivalent resistance R_{TH}), where V_{oc} or V_{Th} is the voltage measured across specified open terminals and R_{Th} is the resistance measured across the same terminals when all the sources present in the network are replaced by their internal resistances.	2M
g)	Write the formula for Delta to Star conversion giving examples.	2M
Ans:	The formula for Delta to Star conversion- $V_{1} \qquad V_{1} \qquad V_{1} \qquad R_{1}$ $V_{2} \qquad R_{a} \qquad V_{2} \qquad R_{3}$ $R_{1} = \frac{R_{b}R_{c}}{R_{a}+R_{b}+R_{c}}$ $R_{2} = \frac{R_{a}R_{c}}{R_{a}+R_{b}+R_{c}}$ $R_{3} = \frac{R_{a}R_{b}}{R_{a}+R_{b}+R_{c}}$	2M
Sub	Answers	Marking
		Calagona

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total Marks

Subject Name: Electric circuits and network

<u>Model Answer</u> Subject Code:

22330

a)	For RLC series circuit draw voltage triangle, power triangle and impedance triangle along with proper labellings and equations for condition $V_L > V_C$.	4M	
Ans:		Voltage	
		triangle	
		1 M	
	Solm > For R-L-C series circuit (For cond ^m VL7Vc)		
	i) Voltage Triangle is given by	Impeda	
	V AS	nce	
	V (),-T	triangle	
		1M	
	ii) Impedence Triangle for VL>Vc is given by	Power	
	121 XX	triangle	
	So , C	-1 M	
	(ii) Power Triangle for VL/VC is given by 5-1-2-0 = VJSind OR APPORT 2000 P=VJCOS 0 P=Active Power		
	L'é la suite de la suite d'étaite	Voltage	
	Si q = vositi q OR pri	equation	
		n-1/2N	
	iv) The vig. and current equations for VL>VC (x(t) = Vmsimut	Curren	
	k(t) = Vmsimut	equation	
	$i(t) = \operatorname{Imsin}(\omega t - \phi)$	n-1/2 ľ	
b)	Define and state equations for (i) Active Power (ii) Reactive Power	4M	
5)		+1V1	
	(iii) Apparent Power.		
Ans:	i)Active Power (P):	Active	
	The active power is defined as the average power P taken by or consumed by the given	power	
	The active power is defined as the average power P_{avg} taken by or consumed by the given	1.5 M	

tified)

and a

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-18 EXAMINATION

Model Answer Subject Code:

Subject Name: Electric circuits and network

22330

	(OR)		
	It is the power which is actually dissipated in the circuit resistance.	Reactiv power	
	$P = V.I.Cos \emptyset = I^2 R$	1.5 M	
	Unit: - Watt OR Kilowatt		
	ii)Reactive Power (Q):-		
	It is the power developed in the reactive elements present in the circuit.		
	(OR)	Appare	
	The reactive power is defined as the product of V, I and sine of angle between V and I .	t powe 1 M	
	Q= V.I. sinØ		
	Units: - VAR OR KVAR		
	iii)Apparent Power (S):-		
	It is the product of rms values of applied voltage and current.		
	Unit: volt-ampere (VA) OR kilo-volt-ampere (kVA)		
	OR Mega-volt-ampere (MVA)		
	S=VI=I ² Z VA		
c)	Explain the steps for converting practical voltage source into practical current source.	4M	
Ans:			

Subject Name: Electric circuits and network

WINTER- 18 EXAMINATION vork <u>Model Answer</u> Subject Code:

22330

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

	Three resistances 32 Ω , 40 Ω , 48 Ω are connected in star circuit. Determine its equivalent delta circuit.	4M
Ans:	$R = R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}$ $R = R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}$ $= (32 \times 4^{\circ}) + (40 \times 48) + (48 \times 32)$ $\therefore R = 4736 \text{ L}$ $R_{23} = \frac{R_{13}}{R_{23}} = \frac{4736}{48} = 98.66 \text{ L}$ $R_{23} = \frac{R}{R_{1}} = \frac{4736}{32} = 148 \text{ L}$ $R_{31} = \frac{R}{R_{2}} = \frac{4736}{40} = 118.4 \text{ L}$	
	R2 40	

Q. No.	Q. N.	Answers	Scheme
3		Attempt any THREE of the following :	12- Total Marks

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

a)	If $Z_1 = 3 + j7$ and $Z_2 = 12 - j16$ are connected in parallel. Find the equivalent impedance of combination.	4M
Ans:	Equivalent impedance, $Z_{eq} = \frac{Z_1 Z_2}{Z_1 + Z_2} = \frac{(3+j7)(12-j16)}{(3+j7) + (12-j16)} = \frac{(7.62 < 66.8)(20 < -53.13)}{(7.62 < 66.8) + (20 < -53.13)} =$	Formul 1M Steps 1M
	$=\frac{152.4<13.67}{17.5<-40}=8.71<53.67=5.16+j7\ \Omega$	Ans. 2N
b)	Determine Bandwidth and Quality factor (Q) for the series circuit.	4M
Ans:		2 M
	Band width:	each
	The bandwidth of aseries circuit is given by the band of frequencies which lies between two	
	points on either side of f_0 where current falls to $I_0/\sqrt{2}$. (graph may be desirable)	
	From the given fig., band width AB is, $AB = \Delta f = f_2 - f_1$ or $AB = \Delta \omega = \omega_2 - \omega_1$ where f_1 and f_2 are the corner or edge frequencies.	

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

(OR)

$$\Delta f = f_t/Q_t = \frac{\frac{1}{2\pi\sqrt{LC}}}{\frac{1\sqrt{L}}{R\sqrt{C}}} = \frac{R}{2\pi L}$$
Quality factor:
Note: any one of the following can be considered
Reciprocal of power factor is called quality (*Q*) factor or its figure of merit. The *Q*-factor of aseries circuit can be defined as the ratio of impedance to resistance.

$$Q = \frac{Z}{R}$$
It is also defined as,

$$Q = 2\pi \frac{\text{maximum energy stored per cycle}}{\text{Energy dissipated per cycle}}$$
For a resonant circuit it may be determined in any of the following ways
() It is given by the voltage magnification produced in the circuit at resonance.
Voltage magnification = $\frac{V_{L_0}}{V_t} = \frac{I_0 X_{L_0}}{I_0 R} = \frac{\text{reactive power}}{active power} = \frac{X_{L_0}}{R} = \frac{\alpha_0 L}{R} = \frac{\text{reactance}}{\alpha_0 CR} = \frac{1}{\alpha_0 CR}$
 $\therefore Q = \text{factor}, \qquad Q_0 = \frac{\alpha_0 L}{R} = \frac{2\pi f_0 L}{R} = \tan \phi$

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

$$Q\text{-factor} = 2\pi \frac{\max \max \max \text{ denergy dissipated per cycle}}{energy dissipated per cycle} \qquad \dots \text{ in the circuit}$$

$$= 2\pi \frac{\frac{1}{2}Lt_0^2}{L^2 R T_0} = 2\pi \frac{\frac{1}{2}L(\sqrt{2}I)^2}{L^2 R (1/f_0)} = \frac{l^2 2\pi f_0 L}{L^2 R} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 C R} \qquad \dots (T_0 = 1/f_0)$$

$$\text{ii i)}$$

$$\text{resonant frequency, } f_0 = \frac{1}{2\pi \sqrt{(LC)}} \text{ or } 2\pi f_0 = \frac{1}{\sqrt{(LC)}}$$

$$\text{Substituting the above in equation, } Q_0 = \frac{2\pi f_0 L}{R}, \text{ we get,}$$

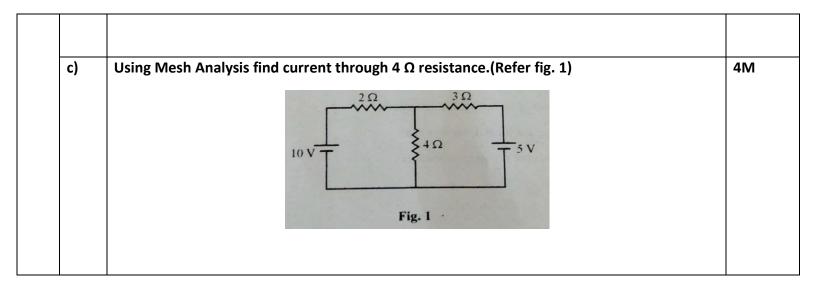
$$Q_0 = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$\text{iv) } Q\text{-factor of a resonant series circuit may be written as,}$$

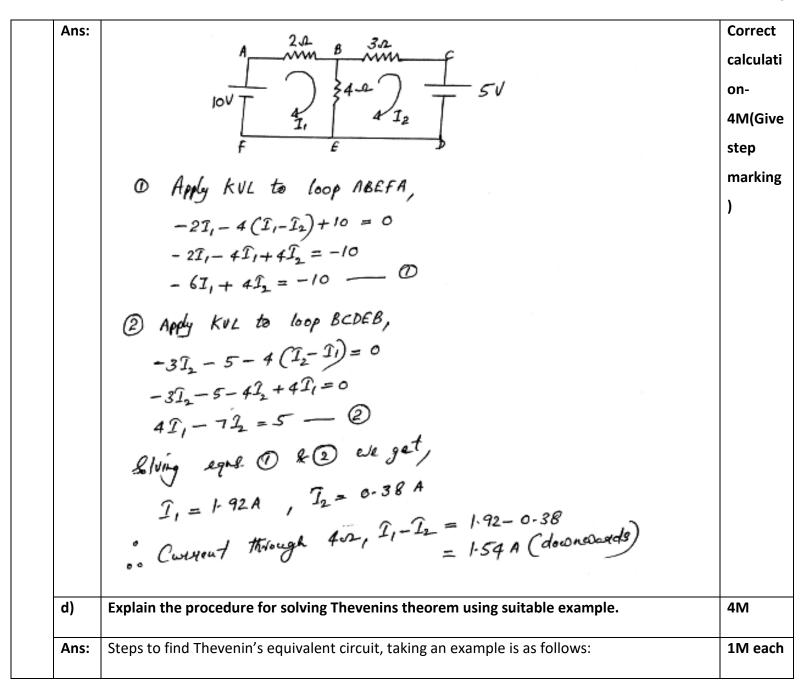
$$Q_0 = \frac{\omega_0}{\max d + 1} = \frac{\omega_0}{\Delta \omega} = \frac{\omega_0}{R/L} = \frac{\omega_0 L}{R} = \frac{L}{R \sqrt{LC}} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

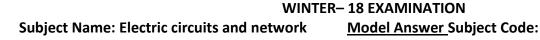
$$\text{v) It may also be deduced as,}$$

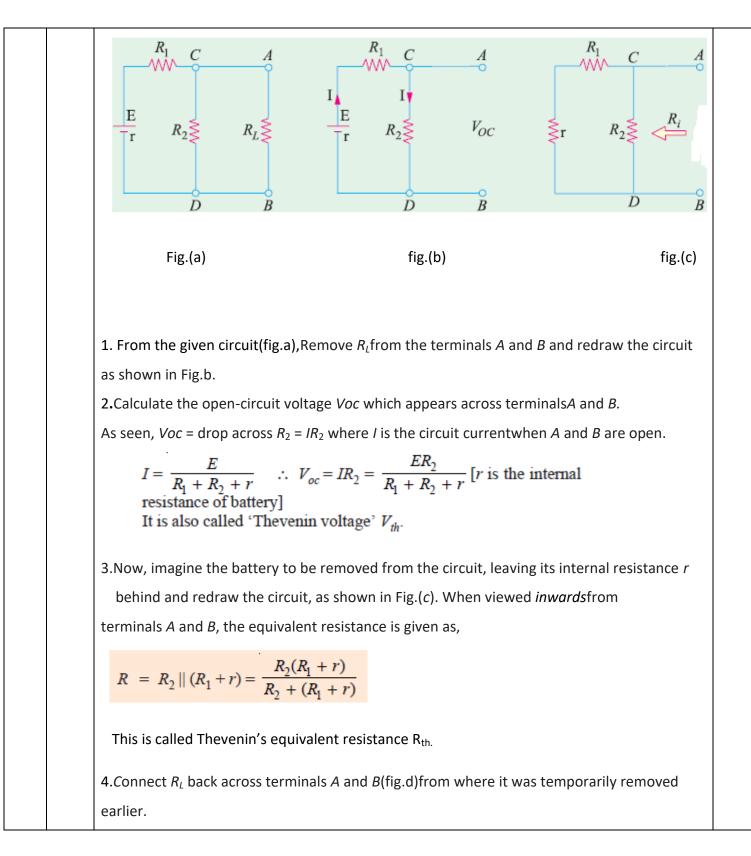
$$Q_0 = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 C R} = \frac{1}{R} \sqrt{\frac{L}{C}} = \sqrt{\frac{X_{LO} X_{CO}}{R}} = \frac{f_0}{B_{hp}} = \frac{\omega_0}{\omega_2 - \omega_1} = \frac{f_0}{f_2 - f_1}$$


$$\text{Where } B_{hp} = \text{ bandwidth of the circuit}$$

Subject Name: Electric circuits and network

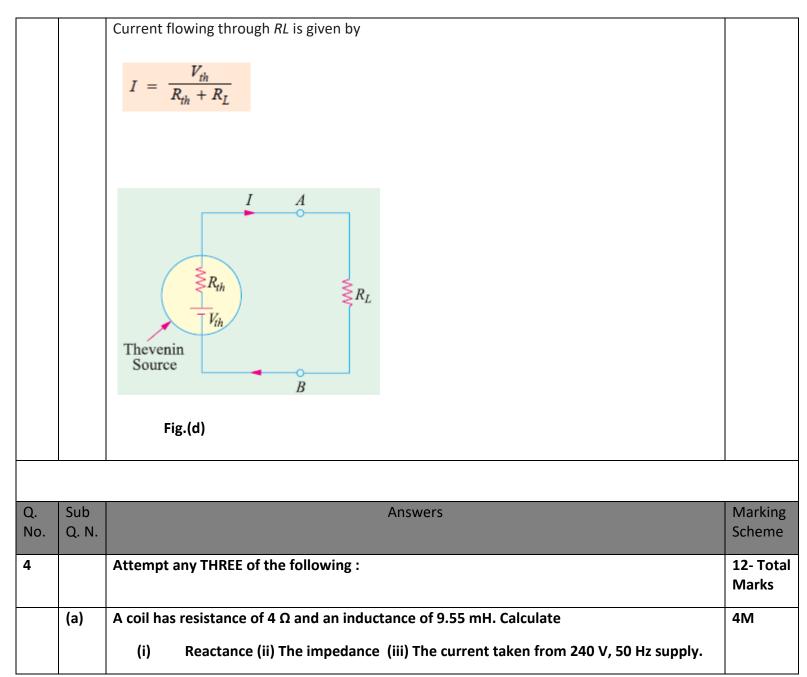

Model Answer Subject Code:


22330



Subject Name: Electric circuits and network

Model Answer Subject Code:



Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

Subject Name: Electric circuits and network

```
Model Answer Subject Code:
```

22330

Ans:	402 L= 9.53 MH	1M each
		for
		paramet
	240V, SOH3	ers &
		1M for
	Data given:	proper
	R=4, L= 9.55 MA, V=240V, f=50HZ	steps
	i) Reactance, $X_L = 2\pi f L = 2 \times 3 \cdot 14 \times 50 \times 9 \cdot 55 \times 10^3 = 3 \cdot 2$ ii) Impedance, $Z = R + j \times L = 4 + j = 5 / 3 \cdot 6 \cdot 87 \cdot 2$	followed
	ii) Impedance, Z = R+jXL = 4+j3 = 5/36.87.02	
	iii) Constent, $I = \frac{V}{Z} = \frac{240}{5} = \frac{48A}{5}$	
	(or)	
	(i) Impedance, $Z = \sqrt{R^2 + \chi L^2} = \sqrt{4^2 + 3^2} = 5.52$	
	$M_{1} = \sqrt{K + \chi L} = \sqrt{4 + 3} = \frac{5 J L}{2}$	
(b)	Draw the phasor diagrams for a series RL and series RC with AC supply.	4M
(7		
Ans:	Phasor diagram of RL series circuit:	2M for
	В	each
		diagram
	V $_{V}$	
	$V_{\rm L}$	
	ф <i>I</i>	
	V_R A	

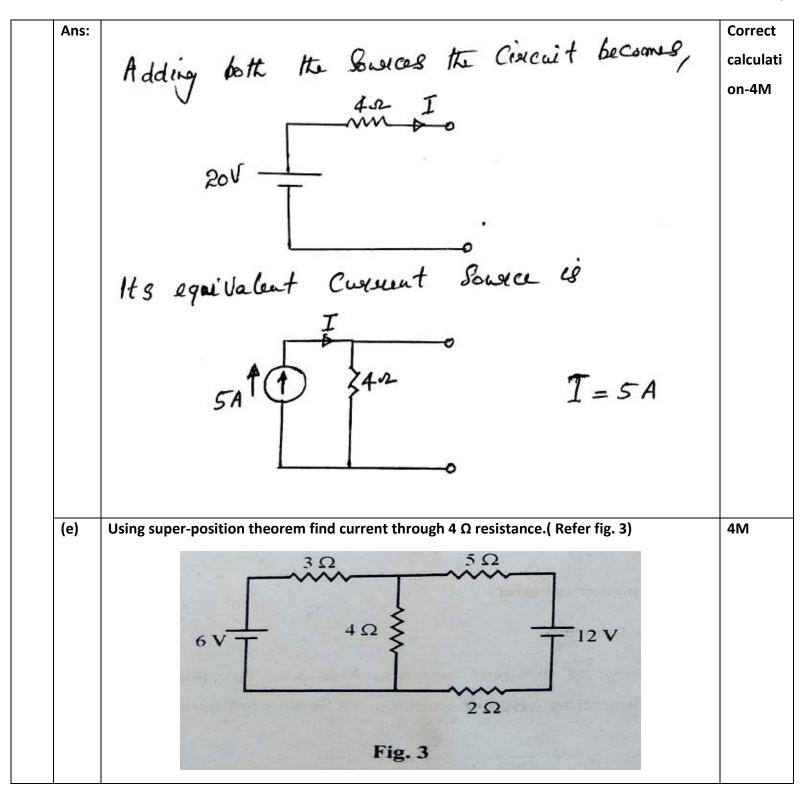
Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

17

	Phasor d	liagram of RC series circuit:		
		V	V _R I -V _C	
(c)	Compare	e series and parallel circuits.		4M
Ans:				1M eac
	Sr.No.	Series circuit	Parallel circuit	for any points
	1	Element are connected end-on- end $v = R_1$ $v = R_2$ R_2	Equi-potential ends are connected together $v \stackrel{+}{=} \qquad R_1 \qquad R_2 \qquad R_3$	
	2	Same current flows through all parts of the circuit.	Same voltage acts across all parts of the circuit	
	3	Different resistors have their individual voltage drops.	Different resistors have their individual currents.	
	4	Voltage drops are additive.	Branch currents are additive.	



Subject Name: Electric circuits and network <u>Model Answer</u> Subject Code:

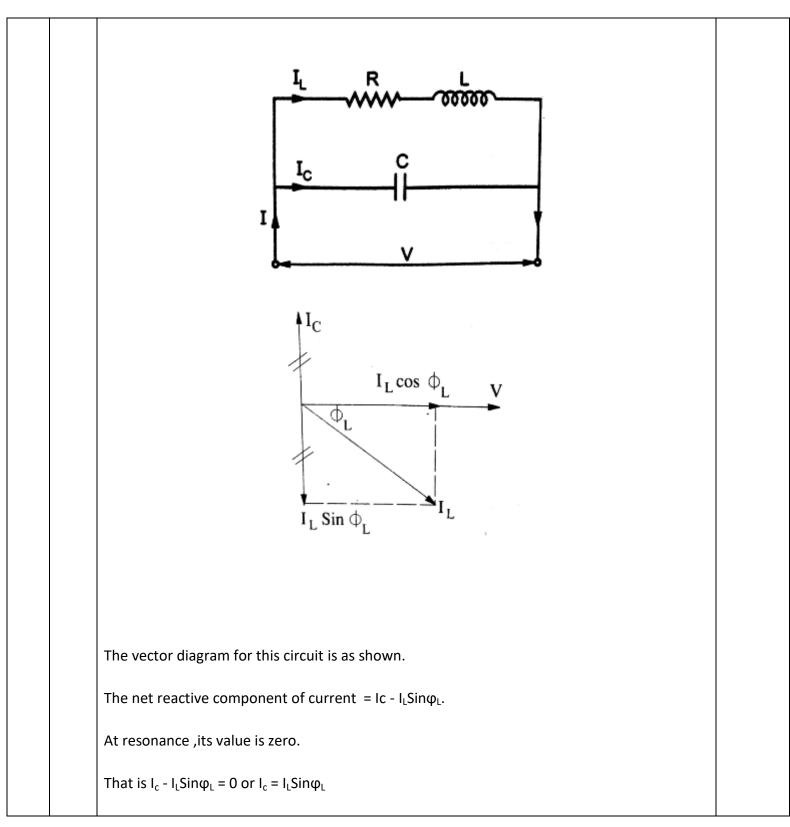
	5	Applied voltage equals the sum of different voltage drops.	Individual voltages is equal to supply voltage	
	6	Resistances are additive.	Conductances are additive.	
	7	Powers are additive.	Powers are additive	
(d)	Using so fig. 2)	2Ω	d the resultant current (I) through circuit. (Refer 2Ω A B B g. 2	4M

Subject Name: Electric circuits and network

Model Answer Subject Code:

22330

Ans:	$\frac{3 \text{tep } I}{I' 3.2} \qquad \begin{array}{c} \text{Witte } 6V \ \text{Source } a \text{ loke} \end{array} \\ 6V \qquad \begin{array}{c} I' 3.2 \\ 6V \qquad \end{array} \qquad \begin{array}{c} T' 3.2 \\ 6V \qquad \end{array} \qquad \begin{array}{c} T' 3.2 \\ T' 3.2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2.2 \\ 1 \\ 2.2 \\ 1 \\ 2.2 \\ 1 \\ 2.2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	Corrct calculati on -4M
	$\begin{aligned} \widehat{I_{1}} &= \underbrace{I'_{x}(5+2)}_{4+5+2} = \underbrace{I \cdot 08 \times 7}_{11} = \underbrace{0 \cdot 69A}_{5} \mathbf{I} \\ \text{Step } \widehat{IL} (\text{Wilt 12V alone}) \end{aligned}$	
	$\frac{3 \frac{2}{4} \frac{1}{2}}{\frac{1}{4} \frac{1}{2}} \frac{1}{12} \frac{1}{12}$	
	$\begin{split} I_{1}^{\prime\prime} &= \underbrace{\widehat{I}_{2}^{\prime\prime} \times 3}_{3+4} = \underbrace{\frac{1\cdot38\times3}{7}}_{7} = 0.59 \text{A} \text{B} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	


Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	Derive the expression for resonance frequency for parallel circuit.	6M
	Ans:	A parallel circuit containing an inductance and a capacitance is said to be in resonance when	Diagram
		the current through the parallel combination is in phase with the supply voltage.	2M,
		Consider a parallel combination of L and C as shown below.	derivati
			on 4M

Subject Name: Electric circuits and network

WINTER– 18 EXAMINATION vork <u>Model Answer</u> Subject Code:

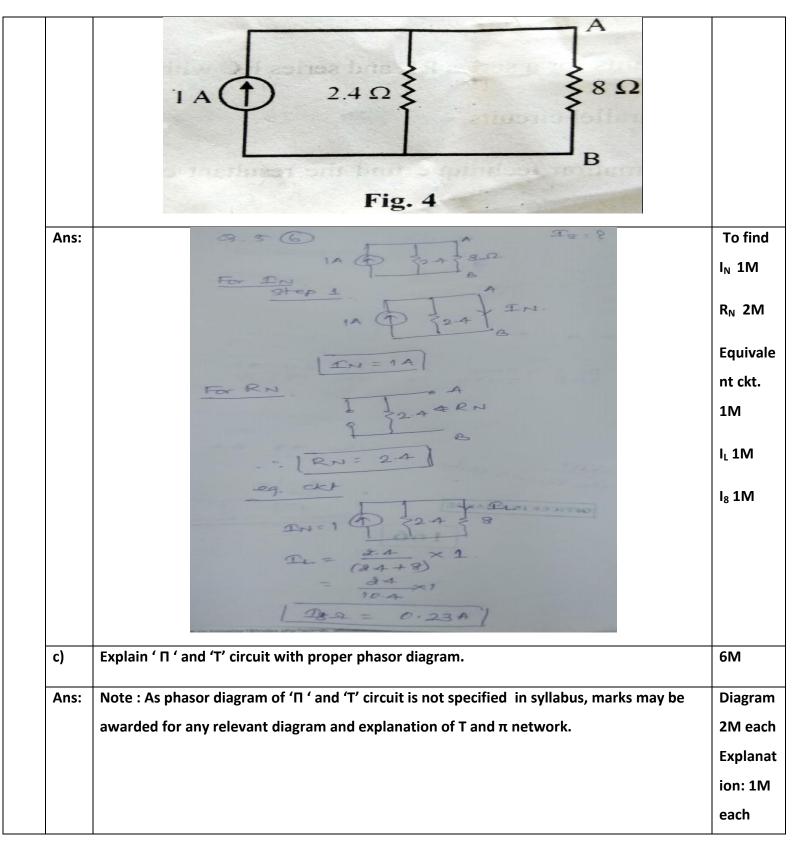
MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network

Model Answer Subject Code:

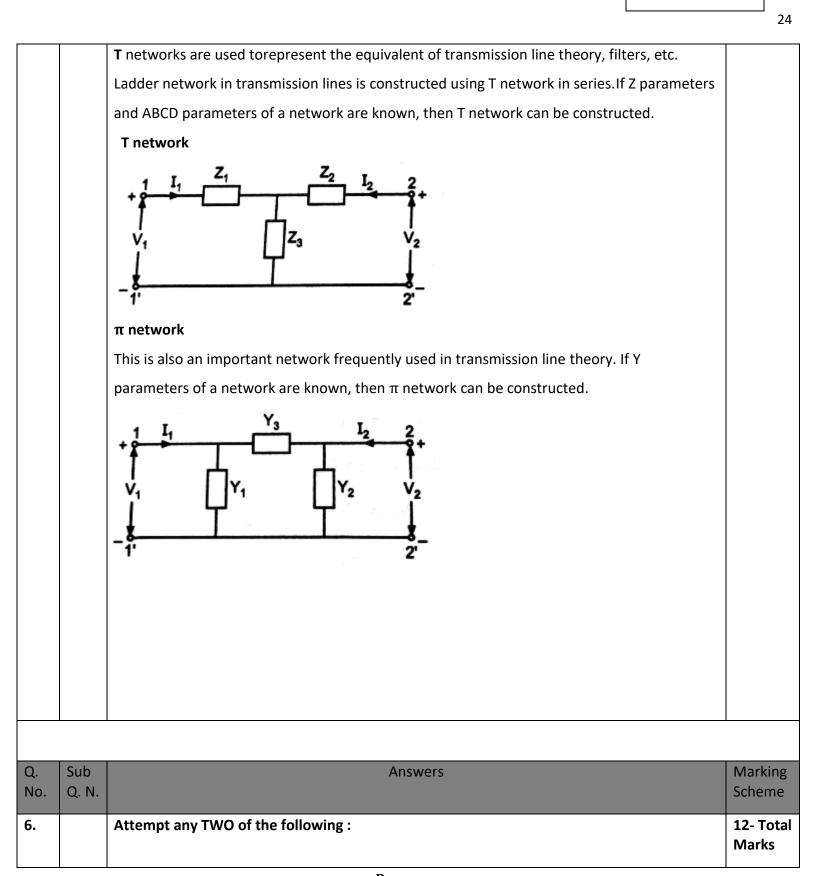
22330


22

6M

From the diagram above, $I_{L} = V/Z$, $Sin\phi_L = X_L/Z$, $I_c = V/X_c$ Substituting these values in the above equation, the condition for resonance becomes $V/X_c = (V/Z)(X_L/Z)$ or $(X_L)(X_c) = Z^2$ Substituting $X_L = \omega L$ and $X_c = 1/\omega C$ $(\omega L/\omega C) = Z^2$ $L/C = R^{2} + (2\pi fL)^{2}$ $(2\pi fL)^2 = \frac{L}{C} - \frac{R^2}{L^2}$ $2\pi f = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ If $f=f_r = resonant$ frequency, then, $f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ If R is negligible, then $fr = \frac{1}{2\pi\sqrt{LC}}$ Calculate current through 8 Ω resistance using Norton's theorem.(Refer fig. 4) b)

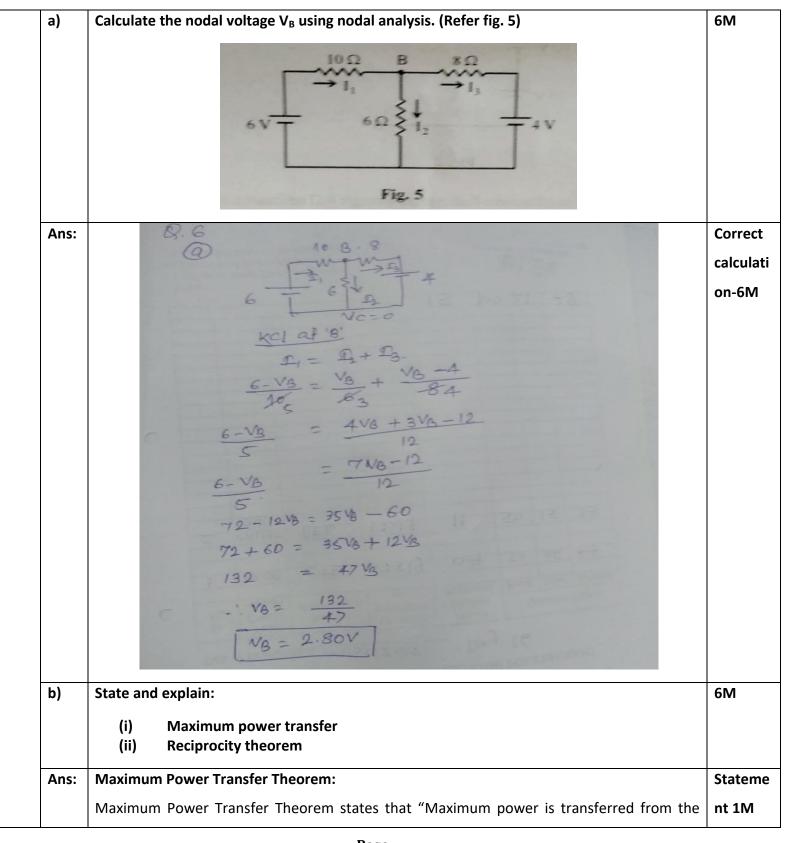
WINTER– 18 EXAMINATION Subject Name: Electric circuits and network <u>Model Answer</u> Subject Code:


22330

BOARD OF TECHNICAL EDUCATION MAHARASHT (Autonomous) (ISO/IEC - 2700 tified)

WINTER-18 EXAMINATION Subject Name: Electric circuits and network

Model Answer Subject Code:



Subject Name: Electric circuits and network

Model Answer Subject Code:

MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

WINTER- 18 EXAMINATION

Subject Name: Electric circuits and network

22330

26 source to the load when the load resistance is equal to the Thevenin's equivalent resistance each of the given circuit as seen from load terminals" Explanat ion .i. e, R_I = R_{тн} 2M each In above figure a variable load resistance R_L is connected to an equivalent Thevenin circuit of original circuit. The current for any value of load resistance is, $I_L = \frac{V_{TH}}{R_{TH} + R_L}$ Then, the power delivered to the load is.. $P_L = I_L^2 \times R_L$. $P_L = \left(\frac{V_{TH}}{R_{TH} + R_L}\right)^2 \times R_L$ Maximum power transfer occurs when the load resistance R_L= R_{TH}. Substituting $R_L = R_{TH}$ in the above equation, we get $P_{I} = [V_{Th}/(R_{I} + R_{I})^{2}] R_{I}$ $= (V_{Th}/2R_{L}^{2}) \times R_{L}$ $P_{Lmax} = \frac{V^2}{4R_I}$ **Reciprocity Theorem :** Statement: In any linear bilateral network, if a source of emf E in any branch produces a current I in any

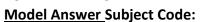
other branch , then the same emf E acting in the second branch would produce the same current I in the first branch.

(OR)

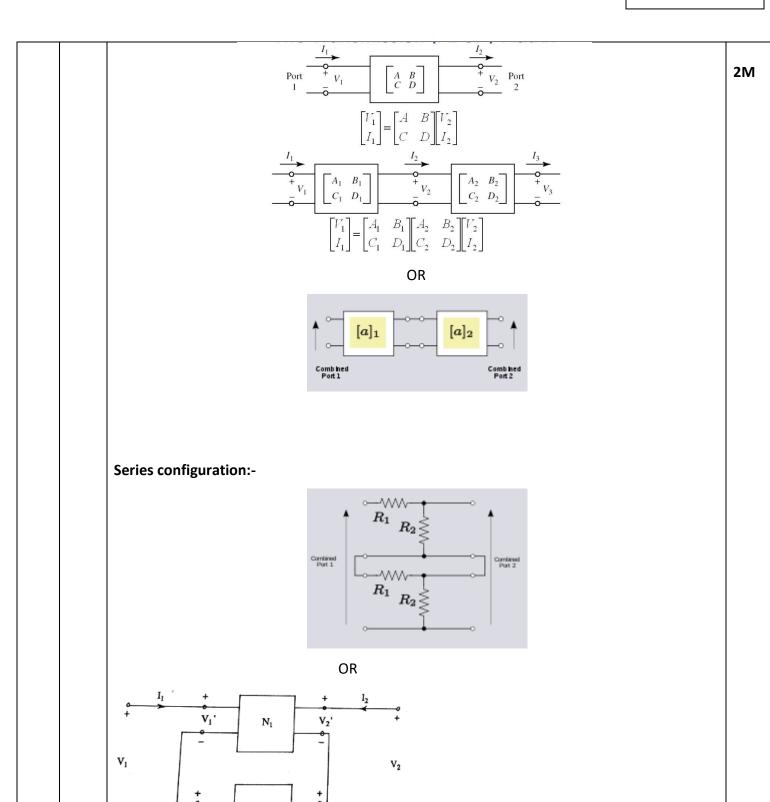
MAHARASHT (Autonomous) BOARD OF TECHNICAL EDUCATION (ISO/IEC - 2700 tified)

WINTER-18 EXAMINATION

Subject Name: Electric circuits and network


Model Answer Subject Code:

22330


	In any branch of a network or circuit, the current due to a single source of voltage (V) in the	
	network is equal to the current through that branch in which the source was originally	
	placed when the source is again put in the branch in which the current was originally	
	obtained.	
	Explanation :	
	Consider the two circuits shown below.	
	$ \begin{array}{c} R_{1} \\ R_{2} \\ R_{3} \\ P \\ $	
	The various resistances R_1 , R_2 , R_3 are connected in the circuit diagram above with a voltage	
	source (V) in first loop and an ammeter in second loop in first circuit.	
	In the second circuit the positions of voltage source and ammeter are interchanged	
	According to Reciprocity Theorem, the ratio of V / I called transfer resistance. It remains same	
	in both cases. In this way the theorem is useful for solving networks.	
c)	Explain significance of two-port network. Also draw two port network for	6M
	(i) Cascade configuration ABCD parameter (ii) Series configuration	
Ans:	(i) Cascade configuration ABCD parameter (ii) Series configuration Significance of two-port network:-	2M
Ans:		2M
Ans:	Significance of two-port network:-	
Ans:	Significance of two-port network:- A two-port network is regarded as a "black box" with its properties specified by a matrix of	
Ans:	Significance of two-port network:- A two-port network is regarded as a "black box" with its properties specified by a matrix of numbers. This allows the response of the network to signals applied to the ports to be	
Ans:	Significance of two-port network:- A two-port network is regarded as a "black box" with its properties specified by a matrix of numbers. This allows the response of the network to signals applied to the ports to be calculated easily, without solving for all the internal voltages and currents in the network.	
Ans:	Significance of two-port network:- A two-port network is regarded as a "black box" with its properties specified by a matrix of numbers. This allows the response of the network to signals applied to the ports to be calculated easily, without solving for all the internal voltages and currents in the network.	
Ans:	Significance of two-port network:- A two-port network is regarded as a "black box" with its properties specified by a matrix of numbers. This allows the response of the network to signals applied to the ports to be calculated easily, without solving for all the internal voltages and currents in the network.	
Ans:	Significance of two-port network:- A two-port network is regarded as a "black box" with its properties specified by a matrix of numbers. This allows the response of the network to signals applied to the ports to be calculated easily, without solving for all the internal voltages and currents in the network.	

Subject Name: Electric circuits and network

22330

28

 N_2

V1"

_

۵

V2"

Subject Name: Electric circuits and network

WINTER-18 EXAMINATION

Model Answer Subject Code:

22330

	29
Where N_1 and N_2 are two 2-port networks	

Page 29/29