

Subject Name: Advanced Manufacturing Process Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
	А	Attempt any Three of the Following	12
1	i)	How are Nontraditional machining process classified? Sate its importance.	
		Ans : Classification of non-traditional machining processes Non Traditional Process	02 M
		Mechanical Processes Electrochemical Processes Electro-Thermal Processes Chemical Processes -Abrasive Jet Machining (AJM) -Electrochemical Machining (ECM) -Electro- discharge machining (EDM) -Chemical Milling (CHM) -Ultrasonic Machining (USM) -Electro Chemical Grinding (ECG) -Laser Jet Machining (UM) -Photochemical Milling (PCM) etc. -Water Jet Machining (WJM) -Electro Jet Drilling (EDD) -Electron Beam Machining (EBM)	
		 Importance of Nontraditional Machining process. Material removal may occur with chip formation or even no chip formation may take place. 	02 M Any
			Simil

In NTM, there may not be a physical tool present. Point 2. 3. In NTM, the tool need not be harder than the work piece material. 4. Mostly NTM processes do not necessarily use mechanical energy to provide material removal. 5. They use different energy domains to provide machining. Differentiate between absolute and incremental coordinate system used in CNC part programing with an Example. 1 ii) 04 M Absolute Incremental Any 4 The coordinate will measured with respect to the The co-ordinate of any point is calculate with Point origin of the co-ordinate system also called zero reference to the previous point. with point. Example G90 G91 It Is easy to check and correct the program It is difficult to check the part program written in incremental mode The main advantage of the absolute system as In incremental system, any time the work is compared with the incremental system, is in the interrupted, before switching on again, the case of interruption that force the operator to stop operator must bring the tool manually to the the machine exact place of the last operation occurred. Almost all the point to point positioning system Incremental system are not often used for used absolute system. controlling point to point machine tools Absolute system is used for general program Incremental system is used for canned cycle, do loop and subroutine program. 4.00 3.00 = 0.1 == 00.1 == 00.1 == 0.0 - 2 00. = 1.00 = Y0 -1.00 75 1.00 . ¥ 1.50 50 2.00 1.25 + . 50 -Describe the prime features of horizontal boring machine. iii) The prime feature of horizontal boring machine are. 04 M 1. Heavy and Strong Bed: It has a heavy and strong bed, which carries the entire load of different parts, work piece and tool mounted over it. Any 4 Point 2. Two Vertical columns: One column is mounted on each end of the table. 3. Head Stock: It can be moved vertically along the main column to facilitate different size work pieces. 4. Horizontal Table: It is mounted on the saddle and can be moved in longitudinal and cross

9	ubject Na	ame: Advanced Manufacturing Process <u>Model Answer</u> Subject Code: 17527	
		2. Embossing , engraving operation on harder materials and for making holes in nozzles.	
		3. Internal threads and internal gears can be produced in harder material.	
		4. Shaping Tungsten carbide dies, press tools and to give any intricate shape.	
1		Attempt any one of the following.	06 M
	В	i) Explain the different process parameters considered in EDM Process. How these parameters affect on EDM process.	
		The Main process parameters in EDM arei)Supply Voltageii)Break down voltage.iii)Resistance and Capacitance.iv)Spark gap settingv)Pulse duration.vi)Spark Frequency.i)Supply Voltage	
		- It is the voltage which is provided by the power supply system.	
		- It ranges between 50 V to 400 V DC	
		ii) Break down voltage	
		- It is the voltage at which the dielectric breakdown.	
		- Increase in breakdown voltage results in increase of spark energy.	
		- Consequently the metal removal rate increases which result in poor surface finish.	
		iii) Resistance and Capacitance	
		- Increase in capacitance will result in increase of metal removal rate.	
		- Decrease in the resistance will result in increase of metal removal rate	
		iv) Spark gap setting	
		- Decrease in the spark gap result in the lower metal removal rate.	04 M
		- This result in better surface finish and high accuracy.	
		v) Pulse Duration	
		- The pulse duration ranges from 2 to 2000 µsec.	
		- Decrease in pulse duration will result in high tool wear.	
		- Increase in pulse duration results in lower metal removal rate.	
			1

Subject Name:Advanced Manufacturing ProcessModel AnswerSubject Code:17527

	This light is emitted in the form of divergent beam. A lens is incorporated in the path of this beam of light which converges and focuses the light beam on to the workpiece to be machined. This concentration of laser beam on the work piece melts the work material & vapourises it.	
1 \	b) Explain the use of following codes in CNC part programming.	
b)	Ans :	
	G80 : Canned cycle cancel.	01 Ma
	G91 : Incremental Positioning.	each
	M03 : Spindle start (Clockwise).	
	M98 : Call Subroutine.	
	c) Explain with neat sketch rack cutter gear generating process	
	External gear teeth generation by rack type cutter	02 M 02 M Any similar fig.
	- Gear cutting using rack type cutter Gear shaping is performed by a rack cutter with 3–6 straight teeth.	
	 Gear cutting using rack type cutter Gear shaping is performed by a rack cutter with 3–6 straight teeth. The cutters reciprocate parallel to the work axis when cutting spur gears, and parallel to the helix angle when cutting helical gears. 	
	 Gear cutting using rack type cutter Gear shaping is performed by a rack cutter with 3–6 straight teeth. The cutters reciprocate parallel to the work axis when cutting spur gears, and parallel to the helix angle when cutting helical gears. In addition to the reciprocating action of the cutter, there is synchronized rotation of the gear blank with each stroke of the cutter, with a corresponding advance of the cutter in a feed movement. 	02 M
d)	 Gear cutting using rack type cutter Gear shaping is performed by a rack cutter with 3–6 straight teeth. The cutters reciprocate parallel to the work axis when cutting spur gears, and parallel to the helix angle when cutting helical gears. In addition to the reciprocating action of the cutter, there is synchronized rotation of the gear blank with each stroke of the cutter, with a corresponding advance of the cutter in a feed movement. d) Differentiate between gear hobbing process and gear shaping process. 	02 M
d)	 Gear cutting using rack type cutter Gear shaping is performed by a rack cutter with 3–6 straight teeth. The cutters reciprocate parallel to the work axis when cutting spur gears, and parallel to the helix angle when cutting helical gears. In addition to the reciprocating action of the cutter, there is synchronized rotation of the gear blank with each stroke of the cutter, with a corresponding advance of the cutter in a feed movement. d) Differentiate between gear hobbing process and gear shaping process. 	02 M

Subject Name: Advanced Manufacturing Process Model Answer

	2	Hobbing produces a series of radial flats	Shaping produces a series of straight line parallel	each for
		based on feed rate of Hob across the work	to the axis of the gear . surface finish may be	any
			better.	Similar
	3	It use as multipoint cutter Know as Hob.	It uses a rack cutter or pinion cutter.	
	4	It is repid accordingland highly	It required more time then helping	
	4	productive.	It required more time than hobbing.	
	5	It cannot generate internal gear	It can be used to produce internal gears also	_
)	e)	Explain the concept of repair cycle analysis	and repair complexity.	
	RI	EPAIR CYCLE ANALYSIS		
	_	The cycle of inspection, small repair, mediu	m repair and complete overhaul is called as repair	
		cycle. Inspection of machine tool is the first	stage of maintenance.	
	-	Small repair carry out repairs of coolant syst	em, replace of belts, tool holder, pumps etc.	
	-	Medium repair involves the activities like w assemblies, etc.	ash the parts, paint the surfaces, repair the	02 M
	-	Complete overhauling includes disassembly	, repair, replace, paint and assembly of each unit.	
	-	The inspection and repair activities are carrisequence.	ed out on the machine tool in a particular	
	-	This sequence is determined forehand in the	early life of the machine.	
	-	Thus the cycle of I (inspection) S,M(small or repeated till three or four overhauling.	r medium repair) and C(complete overhaul) is	
	-	The cycle of inspection, small repair and me called as repair cycle. OR	dium repair between two complete overhauls is	
	-	The cycle from machine commissioning to f	irst complete overhaul is called as repair cycle.	
	-	e.g. Repair cycle for particular grinding mac I6 - M2 - I7 - S5 - I8 - S6 - I9 - C	hine I1 - S1 -I2- S2 - I3 - M1 - I4 - S3 - I5 - S4 -	
	REPA	IR COMPLEXITY		
	-	Repair complexity is indicated by a number is 5 R.C. for a medium duty milling machine	s (figures) E.g. R.C. for a centre lathe of small size is between 11 to 15.	
	-	It tells about how complex a machine is to re-	epair.	02 M
	-	Repair complexity cannot be measured.		02 111
	-	It can be decided from relative figures of sin	nilar machines.	

Subject I	Jame: Advanced Manufacturing Process <u>Model Answer</u> Subject Code: 17527	
	- It changes with change in specifications of machine.	
	- It increases with increase in capacity of machine.	
3	Attempt any TWO of the following	<u> </u>
a)	Write a part program for a job as shown in Fig. No. 1. Take only finish cut. Spindle speed is 1200 rpm and feed rate is 150mm/rev. Assume suitable machining data, if necessary	
Ans	Point X Coordinate Z P_{0} <	1 Mark for diagram And 1 Mark for Coordin ates
	N005 G01 X 0.0 Z 0.0 F 150; N006 G01 X 10.0 Z 0.0; N007 G01 X 50.0 Z - 20.0; N008 G01 X 50.0 Z - 30.0; N009 G02 X 50.0 Z - 40.0; N010 G01 X 50.0 Z - 80.0;	6 Marks for Logical program

Subject Name: Advanced Manufacturing Process Model Answer Subject Code: 17527 N011 G01 X 60.0 Z - 80.0; N012 M05 M09; N013 G28 U 0.0 W 0.0; N014 M30; Explain working principle of PAM with neat sketch. Disadvantages and applications of PAM. b) Ans **Plasma Arc Machining Principle:-**1 Mark The material is removed by directing a high velocity jet of high temperature (11000 to 30000 Degree for C) ionized gas on the work piece. Principl CIRCITOOR e Insulation Gas/Gas mixture (H2,N2, O2) D.C. power 1 Mark supply Chamber for neat Diagram High temperature onized gas stream Anodic nozzle 2 Marks for **Figure:- Plasma Arc Machining** working Working A gas (H2, N2, O2) is passed through a small chamber in which a high frequency spark is maintained between tungsten electrode (Cathode) and Copper nozzle (Anode). The high velocity electrons generated by arc collide with gas molecules results into ionization of the atoms and causing large 1 Mark amounts of thermal energy to be liberated. The plasma forming gas is forced to the nozzle with high each for exit velocity and high temperature. The plasma jet melts the work piece material and the high velocity any two gas stream effectively blows the molten metal away. Disadva **Disadvantages** ntage [1] High initial cost And [2]Maintaining the equipment is very difficult [3] Skilled personnel is required 1 Mark each for [4] Difficult to handle due to higher temperature any two Applications applicati [1] For machining hard to cut metals such as super alloys, stainless steel, particularly during cut-off or ons rough slitting operations [2] For rough turning of very difficult material [3] For stock cutting, plate beveling, profiling and piercing

Subject Name: Advanced Manufacturing Process Model Answer

		[4] For removing getes and river from costing in foundry	
		[4] For removing gates and riser from casting in foundry [5] It cuts hot extrusion to desired lengths	
		[6] It finds use in the manufacturing of automotive and rail road components	
	c)	Explain the cutting parameters of milling machine. How is the machining time is calculated on a	
	•)	milling mosking	
		milling machine.	
	Ans	Cutting Parameters:-	
		1) Cutting Speed. The gread of the milling suttor is its negistarial linear speed resulting from rotation	
		1) Cutting Speed:- The speed of the mining cutter is its peripheral linear speed resulting from rotation.	
		It is expressed in meters per initiate. $V = \sigma d r$	
		$V = \pi d \Pi$	
		Where, $V = $ the outting speed in m non min 1000	
		v = the diameter of the outton in run	
		d = the diameter of the cutter in min 2	Marks
		n = the cutter speed in r.p.m.	ach for
		CC	orrect 3
		2) Feed:- The feed in the milling machine is defined as the rate at which the workpiece advances under provide automatic advances under provide automatic advances and a sufficient the feed in milling machine is approached by the following methods.	ers
		cutter. The feed in mining machine is expressed by the following methods	
		a) Feed per tooth (Sz) b) Feed per revolution $(Srev)$ c) Feed per initiate (Sin)	and
		a) reed per tooth (Sz):- The feed per tooth is defined by the distance the work advances in the time	
		b) Food non revolution (Snow). The food non outton revolution is the distance the work advances in the	Marks
		b) Freed per revolution (Srev):- The feed per cutter revolution is the distance the work advances in the fo	or Lime
		time when the cutter turns through one complete revolution.	ion
		c) Feed per minute (Sm):- The feed per minute is defined by the distance the work advances in one	ion
		minute. It expressed in mm/min.	
		3) Depth of cut:- The depth of cut in the milling machine is the thickness of the material removed in	
		one pass of the work under the cutter. It is the perpendicular distance mesured between the original and	
		final surface of the work piece and is expressed in mm.	
		Calculation of Machining Time-	
		Calculation of Machining Thire	
		T= L/Sz X Z X n	
		Where,	
		T = the time required to complete the cut in minutes	
		L= the length of the table travel to complete the cut in mm	
		Sz = the feed per tooth in mm	
		Z = the number of teeth in the cutter	
		n = the rpm of the cutter	
4		Attempt any THREE of the following	
)	Differentiate between plain milling mechan and universel milling mechine	
	a)	Differentiate between plain mining machine and universal mining machine	
	Ang	Sr Dain Milling Machina Universal Milling Machina	
	A115	S1. F fam fylning fylacinne Universal fylning fylacinne No	
		1 Table has 3 movements Cross, Table has 4 movements Cross, longitudinal,	

Subject Name: Advanced Manufacturing Process Model Answer

		longitudinal, vertical	vertical, Swivelling	
	2	Helical milling cannot be performed	No such attachment is required	1 Mark
	2	without using spiral milling attachment		each for
	3	It is more rigid and heavier in construction	It is less rigid and light in construction	any 4
	4	No ovviliorios oro provided	It overarm can be pushed back or removed	correct
	5	Table has 2 movements Cross	Table has 4 movements Gross longitudinal	points
	0	longitudinal vortical	Table has 4 movements cross, longitudinal,	
	7	Helical milling cannot be performed	No such attachment is required	
	/	without using spiral milling attachment	No such attachment is required	
 ii)	Explai	n the steps of compound indexing with suita	ble example	
	Lapan	in the steps of compound maching with suit		
Ans	If none providi can be	of the index plate provided with the indexing ng the correct number of holes for the required overcome by compound indexing.	head has a number of holes that is suitable for d fractional turn of the index crank the problem	
	number	r of spaces in one of the hole circles of the inde	ex plate in one direction	
	[2] The direction	en turning the index plate together with the income through a calculated number of spaces of an	lex crank in the same direction or in opposite other hole circle	2 Marks for steps
	[3] the and of	e effective indexing movement will be the alge the index plate	ebraic sum of the movement of the index crank	
	Examp	le:- Index for 257 divisions		And
	Two h	ole circles 'a' and 'b'		
	Use the	e expression N(a-b)/ 40 a.b		
	Take a	n index plate having holes 18 and 27		2 Marks for
	N(a-b)	/ 40 a.b		Example
	= 27(27	7-18) / 40. 27 X 18		
	= 27 X	9 / 40 X 27 X 18		
	= - 1/80)		
	Hence,	X /18 +/- Y/27		
		= 40/N		
		= 40/27 which is the required rotation		
iii)	Explai	n the dressing and truing of grinding wheel	with neat sketches	
Ans	Grindi	ng Wheel Dressing & Truing:-		
	Dressir present	ng removes loading and breaks away the glaze ed to work. A common type of star dresser	d surface so that sharp abrasive particles are again is used to dress the wheel. The dresser is held	

Subject Name: Advanced Manufacturing Process Model Answer

Subject Name: Advanced Manufacturing Process Model Answer

		4 Cost is involved with repair or Estimated 12% to 18% cost savings over	
		replacement of equipment breakdown maintenance program 5 Possible secondary equipment or process Increased component life cycle	
		damage from equipment failure	
		6 Inefficient use of staff resources Efficient use of staff resources	
4	b)	Attempt any ONE of the following	
	i)	Differentiate between up milling and down milling	
	Ans	Sr. No. Up Milling Down Milling	
		1 There is a tendendcy to lift the work Forces are enough on job to press to press	
		piece so extra clamping force is down. So no need of extra clamping forces	1 M
		required	1 Mark each for
		2 Cutter rotates against direction in which Cutter rotates in similar direction in which	6 points
		the work being fed the work being fed	•
		3 Cutting force varies from Zero to max. Cutting force varies from max to zero	
		4 Chip thickness varies from minimum to maximum	
		5 Higher surface finishing can be Obtains lower surface finish obtained	
		6Use of cutting fluid is difficultUse of cutting fluid is easy	
		7 Job and tool moveemnt is opposite Job and tool ovement in same direction	
	ii)	What are the precision grinders? Explain with neat sketch working of centreless grinding	
	,	machine.	
	Ans	Precision Grinders :- Those grinding machines that finish parts to a very accurate dimensions. This is	2 Marks
		concerned with producing good surface finishing and high degree of accuracy. The wheel of work both	for
		A) Cylindrical grinders	explanat
		B) Surface grinders	ion
		C) Internal grinders	
		D) Tool and cutter grinders	
		Centreless grinding	
		Centreless grinding is a method of grinding exterior cylindrical, tapered and formed surfaces	
		that are not held and rotated on centres.	2 Mortes
		The principle elements of the grinders are,	for
		1) Grinding wheel	explanat
		2) WORK 2) Descripting wheel	ion and
		5) Regulating wheel 4) Work rest	2 Marks
		4) Work rest An angular adjustment of 0 to 10^0 is provided in the machine by tilting regulating wheel	diagram
		The actual feed can be calculated by.	anagrain
		$S = \prod dn \sin d$	
		Where, $S = Feed in mm/min$, $N = rpm$	

			d= dia. Of regulating wheel,	$\dot{\alpha}$ = angle of inclination if any	
			Work —	Regulating wheel	
		Both th work is	Grinding wheel e wheels are rotated in the same direction. Frest upon the work rest and together with	(reed wheel) Angular top work rest blade The work rest is located between the wheels, the regulating wheel fed forward, forcing the work	
		against	grinding wheel. The axial movement of the	work past the grinding wheel is obtained by tilting	
		regulati	ng wheel at a slight angle from horizontal.		
5	a)	Attemp	t any FOUR of the following		
	Ans	Explain	the maintenance manual		
		Mainte	nance Manual:-		
		The ma the mai function	intenance of a machine tool is carried out by intenance activities the maintenance person ning of the components.	y a maintenance department and while performing nnel face the problems of assembly details and	
		For reso tool cor manual.	olving this issue the document/ booklet is pre nponents, assemblies, performance level, ma	epare which clearly indicates all details of machine aintenance practices etc. is termed as maintenance	4 Marks for
		Need of	Maintenance Manual		explanat ion
		1) It h	elps to understand the basic maintenance pra	ctices for machine tools	
		1) 11	erps to understand the basic maintenance pra	ences for machine toors.	
		2) It h	elps to decide the type of maintenance for pa	rticular machine tool	
	b)	Differe	ntiate between honing and lapping		
	Ama	S -	Honing	Longing	
	AIIS	No.	noming	сарршу	
		1	Honing is applied to get high degree of	Lapping is applied to get geometrical true	
			surface finish as well as to correct the	surfaces, correct minor surface imperfections	
			roundness, taper in the work.	and improve the dimensional accuracy.	
		2	Honing is slow speed finishing process.	Lapping is low pressure, low speed abrading process to refine surface finish.	1 Mark
		3	Honing action is rotates and reciprocate in	Lapping action is either rotary or reciprocating	each for
			the hole of work piece.		any 4
					correct

Subject Name: Advanced Manufacturing Process Model Answer

	Honing is applied to get high degree of	Lonning is applied to get geometrical true	nointa
4	surface finish as well as to correct the	surfaces correct minor surface imperfections	points
	roundness, taper in the work.	and improve the dimensional accuracy.	
5	Metal removal rate in honing is 0.5 mm in	Metal removal rate in lapping is 0.005 mm to	
	primary and 0.01 mm for secondary.	0.01 mm	
6	Honing stones are used as cutter.	Abrasive particles are loaded on laps are used	
		as a tool.	
7	Applications are on internal and external	Mostly used on flat or regular surfaces.	
Why	balancing of grinding wheel is necessar	v? State safety precautions while performing	
grind	ling operations	y. State safety precautions while performing	
Neces	ssity of Balancing		
1) Balancing provides effective surface finishing	ng on work piece	
2) Prevents damage to worker and machine		1 Maile
3) Improves Service life of wheel		each for
4) Increases utilization of wheel		any 2
Safet	y Precautions		Points
$\frac{1}{2}$	and to one side of the wheel before starting the	grinding machine	
3) Al	ways have wheel guard covering the half portio	on of grinding wheel.	½ Mark
4) Ne	ever run the grinding wheel faster than the reco	mmended speed.	each for
5) Be	fore starting the machine always make sure that	at all magnetic chucks are in turn on position.	correct
6) Do	o not try to clean, mount, remove the work of	or magnetic chuck until the wheel has completely	points
stopp	ed.		
Diffe	rentiate between surface and cylindrical grin	nding process	
Sr.	Surface Grinding	Cylindrical Grinding	
No.			
1	Surface grinding process is employed to	Cylindrical grinding process is employed for	
	finish plane or flat surfaces	cylindrical surfaces	
2	In surface grinding operation the work is	In cylindrical grinding process the work is held	
	held on table and rotating wheel is	between two centers and rotated with rotating	
	allowed to move on it	wheel allowed to move on it	
3	Used for grinding irregular, curved,	Used for contoured cylinders, fillets, and even	1 Mark
	convex, & concave surfaces	cam & shafts	each for 4 correct
-			
4	Work piece is kept on the table and	Work piece is held between two centers or	points
4	Work piece is kept on the table and accordingly reciprocating motion will be	Work piece is held between two centers or chuck and wheel rotates	points
4	Work piece is kept on the table and accordingly reciprocating motion will be provided	Work piece is held between two centers or chuck and wheel rotates	points

Subject Name: Advanced Manufacturing Process Model Answer

e)	Compare	Pull Broach hand Push Broach		
Ans	Sr. No.	Pull Broach	Push Broach	
	1	It is designed to be pulled through	It is designed to be pushed through the work	
		the holes	piece by special press	
	2	The pull broach undergoes tensile force	The push broach undergoes compressive force	
	3	Length of broach is more	Length of broach is short	
	4	Long and slender broaches are possible to use	Short and stocky broaches are used	1 Mark each for any 4
	5	Pull broaches are used for sizing as well as removal of large stock	Push broaches are used for sizing only	correct points
	6	It has large number of teeth	It has less number of teeth	
ns	Advantag 1) Ra 2) Se 3) Hi	es:- ate of production is very high emiskilled operator can perform the oper igh accuracy	ation	1 Mark each for
	4) Hi	gh surface finishing		any 4 correct
	5) Bo	oth roughing and finishing cuts are perfo	orm in one pass	points
	6) Tł	ne process can be used for internal and e	xternal surfaces	
	Attempt a	ny FOUR of the following		
	List the ba	asic parts of column and knee type of a	milling machine State the function of each part	
	Basic part	ts of column and knee type milling ma	chines:-	
Ans	1) Base: -	Serves as a foundation made up of gra	ay cast iron. Carries a column at its one end. All the	
	parts are n	nounted on it.		$\frac{1}{2}$ mark
	2) Column	n: - Main supporting frame mounted ver	rtically on the base. It houses (includes/ enclosed) all	list any
	the mecha	nisms for spindle and table feed.		4 points
	3) Knee: -	- Rigid gray cast iron body which slides	s up & down on vertical ways of column. It contains	anu
	the feed m	echanism of table & different controls to	o operate it.	¹ / ₂ Mark each for
	4) Table:	- Table rests on saddle and travels longi	itudinally. It provides place to mount work piece and	their
	other fixtu	res on it.		s
	5) Spindle	e: - located on upper part of machine a	nd receives power from motor. It holds all the tools	
	and arbors			

Subject Name: Advanced Manufacturing Process Model Answer

b)	Give C	lassification of broaching machine		
Ans	Classif	ication of Broaching Machine		
	Accore	ling to the Construction		
	[1] Hoi	izontal Broaching Machine		
	[2] Ver	tical Broaching Machine		
	[3] Cor	tinuous Broaching Machine		
	Accore	ling to the Working Principle		
	[1] Hyd	Iraulic Broaching Machine		1 Mar
	[2] Me	chanical Broaching Machine		for an
	[3] Ele	ctromechanical Broaching Machine		point
	[4] Cor	nputer Controlled Broaching Machine		
	Accore	ling to the application of Broaching Machine	2	
	[1] Inte	rnal Broaching Machine		
	[2] Ext	ernal Broaching Machine		
c)	State t	he basic maintenance practices for chains in	chain drives	
Ans	a) Prop	er lubrication and servicing of chain.		
	b) Che	king for chain adjustments.		1 Mar
	c) Che	cking for chain elongation, wear out, sprocke	et alignment, condition of lubricants, lubrication	each fo
	system	drip rate of lubricant. Lubrication pump condi	tion.	any correct
	d) Rem	ove accumulation of dirt or foreign materials		points
	e) Chai	n and sprocket wheel should be protected by co	over	
d)	Differe	ntiate between capstan and turret lathe		
Ans	S. N.	Capstan Lathes	Turret Lathes	
	1	The turret of capstan lathe is mounted on slides on the saddle	The turret of the turret lathe is directly mounted on bed	
	2	Less rigidity provided to the tool	More rigidity provided to the tool	1 Mor
	3	Suitable for light weight bar works	Suitable for Larger and heavier loads	each fo
	4	Handy for small components	Larger works can be machined easily	points
	5	High production rate as fast cut is possible	High production rate can not be achieve easily as larger and heavier parts do not permit fast cut	

Ans	context of CNC programming	
	Part Program	2 Marks
	Part programming - Part program defined as the way in which the blocks of instructions are planned	for
	and written such that after its execution on the CNC machine the required shape is obtained on the	n
	work piece in minimum possible time.	
	OR	
	- Part program is a set of instructions the machine tool about the processing steps to be performed the	
	manufacture of component.	
	Preparatory functions are G codes. G codes are designated by the letter G and a two digit numeric	1 Mark
	value. These codes are the most important functions in CNC programming because they direct the	
	CNC system to process the coordinate data in a particular manner. Some examples are rapid traverse,	
	circular interpolation, linear interpolation, and drilling.	
	Miscellaneous function The M word is used to specify certain miscellaneous function such as spindle starts, spindle stop,	
	coolant ON/OFF etc. The miscellaneous function as are those functions which do not related to the	1 Mark
	dimensional movement of the machine. These function actually operate some control on the machine.	
	For example M02 which indicate end of program.	
	For example M02 which indicate end of program.	