SUMMER-18 EXAMINATION			
Subject Name: ESTIMATING AND COSTING	Model Answer	Subject Code:	17501

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
Q. 1	a) (i) Ans	Attempt any THREE of the following: State the meaning of the term estimating and costing. It is the process of calculating probable quantities of various items and expected expenditure to be incurred for particular project or work.	04 Marks
Q. 1	a)(ii) Ans	Enlist the types of estimate. Mention the situation when revised estimate is prepared. Types of estimate: 1. Approximate estimate. a. Plinth area method. b. Cubic content method. c. Service unit method. d. Approximate quantity method. e. Typical bay method. 2. Detail estimate. a. Original or new estimate. b. Revised estimate. c. Supplementary estimate. d. Annual repairs and maintenance estimate. Revised estimate is prepared in following situations. 1. When original sanction amount exceeds or likely to exceed by more than 5% from the rates in original estimate. 2. When the expenditure of work exceeds or likely to exceed by more than 10% of administrative approval. 3. When there is material deviation from original proposed. 4. When sanctioned estimate is more than requirement	01 M 01 M 02 Marks (1/2 per situation)
Q. 1	a)(iii)	State mode of measurements for the following items of work. I) Barbed wire fencing 2) Skirting 3) Dado 4) Purlins	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

		of the following a) Area of land under command of canal b) Per Km length. In the first case, the area under the command of irrigation canal is worked out in hectares. Knowing the cost of similar project, suitable amount per hectare is decided. The approximate estimate is calculated by multiplying the area under the command to per hectare cost of canal. In second case cost per Km length is calculated from the similar units, constructed previously. The approximate cost of proposed canal is calculated by multiplying the length of proposed canal to cost per km length of canal. An amount of contingencies, normally 10% is added to the cost of project. For overheads, 10% cost of approximate estimate is included in the estimate. At last cost for land acquisition, normally 12% is added to get total approximate estimated cost of a project.	01 M 02 M 01 M
Q. 3	b) Ans	Describe D.S.R. State its uses. D.S.R.: - A list of rates of various items is prepared to facilitate preparation of estimate by government bodies like Public Works Department. As the rates vary from place to place, Maharashtra Government publishes list of rates as per districts. These rates are in the form of printed booklet and called as District Schedule of Rates (DSR). This booklet is revised every year because of changes in cost of labor, material every year. It includes Completed rates, per unit cost of item of work and Labor rates. Per unit cost of item includes cost of material, cost of labor, transportation charges, storage of material, charges for tools machineries and plants etc. Labor rates include charges to be paid to head mason, mazdoor, coolie etc. depending on the category of labor. It also includes initial lead and lift and separate charges are applicable for more lead and lift. Similarly the rates are applicable to ground floor only and they are increased for each upper floor. Uses of DSR: a) The work carried out by the department is estimated according to DSR. b) Rates shown in DSR keep check on rates quoted by the contractor. c) If rates of contractor differ much with rates in DSR, tender may be rejected.	01 M 02 M 01 M
Q. 3	c)	Give the hire charges for following machinery/equipment. (i) Concrete mixer (ii) Dumper (iii) Vibrator (iv) JCB Note:- Hire charges may vary from place to place.	01 M for each

\begin{tabular}{|c|c|c|c|}
\hline Q. 3 \& d) Ans \& \begin{tabular}{l}
State the desired accuracy in taking measurement of work as per IS 1200. \\
To achieve the desired accuracy in measurements, following points must be observed. \\
1) Dimensions shall be measured to the nearest 0.01 m except \\
a) Thickness of slab measured nearest to 0.005 m \\
b) Wood work is to be measured nearest to 0.002 m \\
c) Reinforcement , to the nearest 0.005 m \\
d) Thickness of roadwork less than 200 mm is measured nearest to 0.005 m . \\
The tolerances in measurements are \\
a) For volumes ----- 0.01 cu.m \\
b) For areas -------------0.01 sq.m \\
c) For lengths ---------- 0.01 rmt \\
d) For weights ----------0.001 ton or 1 kg . \\
Fraction less than one half is neglected. \\
Fraction equal to one half or more than one half is considered
\end{tabular} \& 02 M

02 M

\hline Q. 3 \& e) Ans \& | Explain the long wall and short wall method for taking out quantities. In this method longer walls in building in one direction are consider as long wall and it is measured out to out. Walls in perpendicular direction of long walls, are consider as short walls and measured in to in for a particular layer of work. This is most practical method as it can be used under all circumstances. Following steps are involved in this method. |
| :--- |
| 1) Foundation plan showing centre line with all dimensions. Centre to centre length is calculated by adding half width of each cross wall to inner dimensions of a room. |
| 2) Group the walls as long walls and short walls. Measure the length of long wall for an item using equation, length of long wall $=\mathrm{c} / \mathrm{c}$ length of long wall + width of item at that layer. |
| 3) Measure the length of short wall for an item using equation, length of short wall $=\mathrm{c} / \mathrm{c}$ length of short wall - width of item at that layer. |
| 4) Multiply number of walls, length, breadth and depth to get the quantity of item. |
| This method is simple, quick and accurate. Method is also known as PWD method. At every layer from foundation to superstructure, length of long wall decreases gradually and length of short wall increases. | \& 02 M

\hline Q. 3 \& \[
$$
\begin{aligned}
& \hline \text { f) } \\
& \text { Ans }
\end{aligned}
$$

\] \& | State purpose of supplementary estimate. Give one example. |
| :--- |
| 1) During the execution of project, certain new items or additional works crop up to supplement the original project. Under such circumstances, it becomes necessary to prepare supplementary estimate. |
| 2) Supplementary estimate is prepared for covering the estimate of sub-work of a project, which is considered necessary for full development of project. |
| 3) Sometimes changes due to material deviation of a structural nature from the original approved design are necessary when the work is in progress. Then for all such items supplementary estimate is prepared. |
| Example: If in a bed room of Bungalow of executive engineer, attached toilet is not provided in original project and then it is decided to construct attached toilet, then supplementary estimate is necessary. | \& 03 M

01 M

\hline
\end{tabular}

Q. 4	a) Ans	Work out quantities of the following any (i)Excavation for foundation (iii) Internal plaster in c.m. (1:4) C / C distance $A B=4.1+0.3=4.4 \mathrm{~m}$. C / C distance $C D=7.5+0.6=8.1 \mathrm{~m}$ C / C distance $\mathrm{AE}=3.2+0.3=3.5 \mathrm{~m}$ C/C distance EC $=4.2+0.3=4.5 \mathrm{~m}$ Measurement Sheet			item wor C. sla	$\begin{aligned} & \text { of } \mathrm{w} \\ & \text { in sur } \\ & (1: 2 \end{aligned}$	from stru $-3.5 \mathrm{~m}$ \qquad CEN	Figure No. 1 ure in c.m. \qquad	1 :6) \underbrace{C}_{5}	
				No	L	B	D/H	Qty	Total Qty	
				1 2 2 3	5.4 9.1 2.5 3.5	1.0 1.0 1.0 1.0	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 6.21 \mathrm{~m}^{3} \\ & 20.93 \mathrm{~m}^{3} \\ & 5.75 \mathrm{~m}^{3} \\ & 12.075 \mathrm{~m}^{3} \end{aligned}$	$44.965 \mathrm{~m}^{3}$	
				1	39.1	1.0	1.15	$44.965 \mathrm{~m}^{3}$	$44.965 \mathrm{~m}^{3}$	
				1 2 2 3	4.7 8.4 3.2 4.2	0.3 0.3 0.3 0.3	3.0 3.0 3.0 3.0	$\begin{aligned} & 4.23 \mathrm{~m}^{3} \\ & 15.12 \mathrm{~m}^{3} \\ & 5.76 \mathrm{~m}^{3} \\ & 11.34 \mathrm{~m}^{3} \end{aligned}$		
				3 5 2	$\begin{aligned} & 1.0 \\ & 1.2 \\ & 1.8 \end{aligned}$	0.3 0.3 0.3	$\begin{aligned} & 2.1 \\ & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & -1.89 \mathrm{~m}^{3} \\ & -2.16 \mathrm{~m}^{3} \\ & -1.29 \mathrm{~m}^{3} \end{aligned}$	$31.104 \mathrm{~m}^{3}$	Any Three 04 M each
				1	40.5	0.3	3.0	$36.45 \mathrm{~m}^{3}$ $-5.346 \mathrm{~m}^{3}$	$31.104 \mathrm{~m}^{3}$	
				1 1 1	3.2 4.2 4.2		4.1 2.5 5.0	$\begin{aligned} & 13.12 \mathrm{~m}^{2} \\ & 10.5 \mathrm{~m}^{2} \\ & 21.0 \mathrm{~m}^{2} \end{aligned}$		

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& 4) \& \begin{tabular}{l}
Bed room \\
Kitchen \\
Living \\
Deductions \\
Doors \\
Windows W1 \\
Windows W \\
R.C.C. Slab (1:2:4)
\end{tabular} \& 2
2
2
2
2
2

2.5
2.5
1
1 \& 3.2
4.1
4.2
2.5
4.2
5.0

1.0
1.2
1.8
8.4

4.7 \& \[
$$
\begin{aligned}
& 4.8 \\
& 3.5
\end{aligned}
$$

\] \& | 3.0 |
| :--- |
| 3.0 |
| 3.0 |
| 3.0 |
| 3.0 |
| 3.0 |
| |
| 2.1 |
| 1.2 |
| 1.2 |
| 0.15 |
| 0.15 | \& \[

$$
\begin{aligned}
& \hline \hline 19.2 \mathrm{~m}^{2} \\
& 24.6 \mathrm{~m}^{2} \\
& 25.2 \mathrm{~m}^{2} \\
& 15.0 \mathrm{~m}^{2} \\
& 25.2 \mathrm{~m}^{2} \\
& 30.0 \mathrm{~m}^{2} \\
& \\
& -5.25 \mathrm{~m}^{2} \\
& -3.60 \mathrm{~m}^{2} \\
& -2.16 \mathrm{~m}^{2} \\
& \hline 6.048 \mathrm{~m}^{3} \\
& 2.468 \mathrm{~m}^{3}
\end{aligned}
$$
\] \& $172.81 \mathrm{~m}^{2}$

$8.516 \mathrm{~m}^{3}$ \&

\hline Q. 4 \& | b) |
| :--- |
| (i) |
| Ans | \& \multicolumn{8}{|l|}{| Attempt any ONE of the following: |
| :--- |
| Find out the quantities of cement, sand and aggregate for R.C.C. 1:2:4 work of 25 cu.m quantity. |
| Quantities of cement, sand and aggregate. |
| Wet volume of concrete given is 25 cu.m |
| Add 52\% more for voids and wastage to get dry volume. \qquad |
| Dry volume $=25+25(52 / 100)=38 \mathrm{cu} . \mathrm{m}$ \qquad |
| Concrete is in proportion 1:2:4, hence |
| Quantity of cement $=[d r y$ volume $/(1+2+4)] \times$ part of cement $=(38 / 7) \times 1=5.43 \mathrm{cu} . \mathrm{m}-$ \qquad |
| Number of bags= $5.43 / 0.035=155.1$ bags $=155$ bags OR 156 bags. \qquad |
| Quantity of sand $=(38 / 7) \times 2=10.86$ cu.m \qquad |
| Quantity of aggregate $=(38 / 7) \times 4=21.71$ cu.m \qquad |
| Note: Someone may take volume of 1 bag of cement as $0.034 \mathrm{~m}^{3}$. |} \& | 01 M 01 M |
| :--- |
| 01 M 01 M 01 M 01 M |

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC-27001-2013 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

		Therefore no (2) Volume of sand = (d (3) Volume of Stone $=2$ (B)Table for rate analys Particulars (A) Material : Cement Sand Stone including through bond stone and wastage (B) Labour: Head mason (Mistri) Mason Male Mazdoor Female Mazdoor Bhisti Scaffolding Sundries T and P etc. (Note : Assumption can place.))) $\times 1=0$. volume of $0.035=24$ proportion))) $\times 4=3$ e of mason $\text { 0) }+10=1$ Rate per unit of Materia dd 1.5 \% w 10 \% cont tal (Rate p Ra tanding of	$\mathrm{cu} . \mathrm{m}$. ment / vol. gs. part of sand $\mathrm{cu} . \mathrm{m}$. $50 \mathrm{cu} . \mathrm{m}$. Unit of mesurts. nd Labour er charges tors profit $10 \mathrm{Cu} . \mathrm{m}$. per Cu. m. Say udent. Rat	f cement bag may vary from place to	01 M 01 M 01 M 04 M for Table and values
Q. 6	a) Ans	Attempt any FOUR of Defme 'Task work'. En Task Work: The capacity of work per day is kno - Factors affecting Task work of a skilled (1) Nature, Size, wages paid etc (2) Availability of s (3) A well-organized (4) Job satisfaction (5) Allotment of pi	llowing: ny four factors doing work by the Task-Wo k work of the r depends up , situation, lo labour. rk. orking condit f work.	ffecting artisan or Out-t bour: the follo tion, clim	work. skilled lab of the lab g factors: condition	r in the form of quantity techniques adopted and	02 M Any four (1/2 M each)

| | *Factors affecting the rate analysis :-
 The factors which affect the rate analysis of an item can be broadly divided into
 following:
 (1) Major Factors and \quad (2) Minor Factors
 (1) Major factors : The are mainly two factors on which the rate of an item depends,--------
 (i) Materials and (ii) Labour.
 (i) Materials :-
 The quantities of various materials required for the construction of an item can be
 easily worked out by knowing the specification of that item.
 (ii) Labour :-
 The labour force will be necessary to arrange the materials in a proper way so that the item
 can be completed.
 (2) Minor Factors :-
 (i) Special equipment: - If the execution of an item requires the use of some special
 equipment ort plant, the cost of using such special equipment on the rental basis should be
 included in the rate analysis of that item.
 (ii) Place of work :- The site of work will also have some effect on the rate of an item under
 certain conditions. If it is too far, more amount will have to be spent on carting. This will
 increase the cost of transportation of the materials and consequently, the rates of the items
 are to be modified.
 (iii) Nature of work :- If the work consists if large quantities of the items, the rates may be
 less and vice versa.
 (iv) Conditions of contract :- If the condition of contract are very stiff, the rates of various
 items will be high and vice versa.
 (v) Profit of the contractor :- The usual percentage of the profit of the contractor is TEN. But
 if it is more or less, the rate of the item will be correspondingly affected.
 (vi) Specifications :- If the specifications of work provide for rigid type tolerances and
 superior quality turn out, the rates will be on the higher side.
 (vii) Site conditions :- If the site conditions are such that difficulties will be experienced
 during execution of work, such as foundations involving water troubles, th0e rates will be
 on the higher side. On the other hand, if site conditions are ideally suited for the
 construction activities, the contractor may quote slightly lower rates.
 (viii) Miscellaneous :- The other remaining miscellaneous factors affecting rates of items
 include time of completion of the project, climatic conditions, reputation of the contracting
 firm, discipline of the organization, etc. | |
| :--- | :--- | :--- | :--- |

Q. 6	e) Ans	Calculate the quantities of following items of work for a circular community well as shown in Figure No. 2 . (i) Excavation in Soft Murum. (ii) R.C.C. Ring Beam quantity of concrete. From the Figure no. 2 Qty. of Excavation and concrete is calculated in Table below:							02 M (01 M for lift wise cal. And 01 M for its total)
					Length	width	de		
		No.		Nos.		Area	/ thk.	Qu	
		(i)	Excavation in soft	murum					
		1	i) up to 1.5 m depth	1	$((\pi / 4) \times 5$	${ }^{2}$) sq. m.	1.5 m	31.86 cu. m.	
		2	ii) 1.5 m to 3.0 m depth	1	$((\pi / 4) \times 5$	${ }^{2}$) sq. m.	1.5 m	31.86 cu. m.	
		3	iii) 3.0 m to 4.5 m depth	1	$((\pi / 4) \times 5$	20^{2}) sq. m.	1.5 m	31.86 cu. .	
		4	iv) 4.5 m to 6.0 m depth	1	$((\pi / 4) \times 5$	20^{2}) sq. m.	1.5 m	31.86 cu. m.	
		5	iv) 6.0 m to 7.5 m depth	1	$((\pi / 4) \times 5$	20^{2}) sq. m.	1.5 m	31.86 cu. m.	
		6	iv) 7.5 m to 8.5 m depth	1	$((\pi / 4) \times 5$	20^{2}) sq. m.	1.0 m	21.24 cu. m.	
					Total exc	vation of sot	ft rock	180.54 cu. m.	
		(ii)	R.C.C. Ring beam	RCC M	20)				
			The Ring Beam ha 4.60 m and Outer	s size diamet	$\begin{aligned} & \text { of } 0.3 \mathrm{mxx} \\ & \text { er is } 5.20 \mathrm{~m} \end{aligned}$	3 m . The in	ner diam	meter of well is	
		1	RCC quantity in Ring Beam	1	$\begin{gathered} (\pi / 4) \mathrm{x} \\ \left.4.60^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 5.20^{2}- \\ & \text { sq. m. } \end{aligned}$	0.3 m.	$1.39 \mathrm{cu} . \mathrm{m}$.	
				Total	Quantity of	RCC in Rin	Beam	$1.39 \mathrm{cu} . \mathrm{m}$.	

