Important Instruction to Examiners:-

1) The answers should be examined by key words \& not as word to word as given in the model answers scheme.
2) The model answers \& answers written by the candidate may vary but the examiner may try to access the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance.
4) While assessing figures, examiners, may give credit for principle components indicated in the figure.
5) The figures drawn by candidate \& model answer may vary. The examiner may give credit for any equivalent figure drawn.
6) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.
7) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.
8) For programming language papers, credit may be given to any other programme based on equivalent concept.

Q.NO	SOLUTION	MARKS
Q1. a)	A) Attempt any THREE of the following.	12
a)	State the meaning of the term estimating and costing.	02
	Estmating: It the process of calculating the quqntities and costs of the various items required in connection with the work for its satisfactory completion. Costing : It the process of determining the actual cost of the work before the execution of work.	$\begin{aligned} & 02 \\ & 02 \end{aligned}$
b)	State any four purposes of estimating and costing.	02
	i) To know the approximate cost of proposed work. ii) To obtain administrative approval and technical sanction. iii) To know the requirements of tools, plants and equipments. iv) To fix up the completion period. v) To draw up a construction schedule and programme. vi) To invite tenders. vii) To keep control over expenditure during construction Valuation to know value of property.	1M each for any Four points
c)	Explain plinth area rate method of approximate estimate.	
	This estimate is prepared on the basis of plinth area of building. The rates are obtained from a similar building having similar specification, heights and construction in the locality. Plinth area estimate is calculated by finding the plinth area of the building and multiply by the plinth area rate. i.e. Approximate cost $=$ Plinth area \times Plinth area rate The plinth area should be calculated for the covered area by taking external dimensions of the building at the floor level. Courtyard and other open area should not be included in the plinth area.	04
d)	What is revised and supplementary estimate?	
	Revised estimate: Revised estimate is a detailed estimate and is required to be prepared under any one of the following circumstances. i) When the original sanctioned estimate is likely to exceed by more than 5%. ii) When the expenditure on a work exceeds or likely to exceeds the amount of administrative sanctioned by more than 10%. iii) If there is change of rate or quantity of materials. iv) Major additions or alterations are introduced in original work. Supplementary estimate: It is detailed estimate of additional work and is prepared when additional works or changes are required to supplement the original works, during the execution of work. Then a fresh detailed estimate of additional works is prepared in addition to the original works. The abstract should show the amount of the original estimate and the total amount including the Supplementary amount, for which sanctioned is required.	02

Q .NO	SOLUTION	MARKS
Q.1. B)	Attempt any ONE of the following.	06
a)	State the mode of measurements for following items of work.	
	I) Honey combed brickwork : sq. m II) Collapsible gate (steel) : sq. m III) Form work : sq. m IV) Brickwork(10 cm thick) in partition wall : sq. m V) Dado : sq. m VI) Wood work for door frame : cu. m	1M for each
b)	State the rules for deduction for openings as per IS-1200 for brickwork and plastering.	
	Rules for deduction for openings as per IS-1200 for brickwork : No deduction is made for the following : i) Opening upto $0.1 \mathrm{sq} . \mathrm{m}$ ii) Ends of beam, posts, rafters, purlin etc. chajjas where thickness does not exceeds 10 cm . iii) Bed plates, wall plates, bearing of chajjas where thickness does not exceed 10 cm. iv) Bearing of floor and roof slabs are not deducted from masonry in superstructure. Rules for deduction for openings as per IS-1200 for plastering : Deduction in plastering are made in the following manner: i) No deduction is made for ends of beams, posts, rafters, purlin etc. ii) No deduction is made for opening upto $0.5 \mathrm{sq} . \mathrm{m}$. and no addition is made for jambs, soffits, and sills of these openings. iii) For opening more than 0.5 sq . m. and upto 3 sq . m . deduction is made for one face only. No addition for jambs, soffits, and sills of these openings. iv) For opening above 3 sq . m . deduction is made for both faces of openings and the jambs, soffits, and sills of shall be added.	03

Q.NO	SOLUTION	MARKS
Q.2. b)	Prepare approximate estimate of a public building having plinth area equal to1800 sq. m. i) Plinth area rate as Rs. 3,500 / sq. m. ii) Special architectural treatment $=3 \%$ of cost of building. iii) Water supply and sanitary installation $=5 \%$ of cost of building. iv) Electric installation $=14 \%$ of cost of building. v) Other services $=5 \%$ of cost of building. vi) Contingencies $=3 \%$ of overall cost of building. vii) Supervision charges $=8 \%$ of overall cost of building. i) Cost of construction: $\mathrm{P} \times$ Plinth area rate $\begin{aligned} & =1800 \times 3,500 \\ & =\text { Rs. } 6,300,000 \end{aligned}$ ii) Special architectural treatment $=3 \%$ of cost of building $\begin{aligned} & =3 / 100(6,300,000) \\ & =189,000 \end{aligned}$ iii) Water supply and sanitary installation $=5 \%$ of cost of building $\begin{aligned} & =5 / 100(6,300,000) \\ & =315,000 \end{aligned}$ iv) Electric installation $=14 \%$ of cost of building $\begin{aligned} & =14 / 100(6,300,000) \\ & =882,000 \end{aligned}$ v) Other services $=5 \%$ of cost of building $\begin{aligned} & =5 / 100(6,300,000) \\ & =315,000 \end{aligned}$ $\begin{aligned} \text { Overall cost of building } & =6,300,000+189,000+315,000+882,000+315,000 \\ & =8,001,000 \end{aligned}$ Add Contingencies $=3 \%$ of overall cost of building $=3 / 100(8,001,000)=240,030$	1 M

\begin{tabular}{|c|c|c|}
\hline Q.NO \& SOLUTION \& MARKS \\
\hline \& \[
\begin{aligned}
\& \text { Add Supervision charges }=8 \% \text { of overall cost of building } \\
\& \qquad \begin{aligned}
\text { A } \& 8 / 100(8,001,000) \\
\& =640,080
\end{aligned} \\
\& \text { Grand Total }=8,001,000+2,40,030+6,40,080 \\
\& \quad=\text { Rs. } 8,881,110
\end{aligned}
\] \& \begin{tabular}{l}
1M \\
1M
\end{tabular} \\
\hline Q.2. c) \& \multicolumn{2}{|l|}{i) State the data required for preparing detailed estimate.} \\
\hline \& \begin{tabular}{l}
i) Drawing: The drawing is the basis from which quantities of various items for a work are calculated. \\
ii) Specification : \\
a) General specification: In general specification the nature and class of work and the names of material to be used are described. It gives a general idea for the project. \\
b) Detailed specification: Detailed specification gives detailed description of every item to be executed, with the qualities, quantities, proportion of materials, workmanship, the method of preparation and execution. \\
lii) Rates: The rates of various materials used in the construction and the wages of different categories of labour should be available for preparing estimate. \\
The location of work and its distance from the source of materials and the cost of transport should be known. \\
These rates may be obtained from P.W.D. schedule of rates book or the rates may be worked out the "Analysis of Rate" method. \\
Modes of measurement: Measurement for different items of work are different. These consider as per guideline of IS1200.
\end{tabular} \& 01
01
01

01
01

\hline \& \multicolumn{2}{|l|}{ii) State the steps in preparation of detailed estimate.}

\hline \& | a) Taking out quantities: Divide the whole work into different items of works such as earthwork, concrete, brickwork etc. take the details of measurement of each items of work and enter the measurement of each item of work in measurement sheet. Once the measurement of each item of work is entered in measurement sheet, squaring of dimension is done. |
| :--- |
| b) Squaring: Squaring is the calculation of numbers, length, area and volume and are entered in the last two column of measurement sheet. |
| c) Abstracting: The cost of each item of work is calculated at the workable rates. The total cost is worked out and entered in the abstract of estimate form. A 3\% to 5% is added for contingencies to allow for unforeseen expenses during the execution of work. A $1 \frac{1}{2} \%$ to 2% is added for work-charged establishment. The grand total thus obtained is the estimated cost of the project. | \& 04

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Q.NO \& SOLUTION \& MARKS \\
\hline \[
\begin{gathered}
\text { Q.3.B) } \\
2
\end{gathered}
\] \& \begin{tabular}{l}
Explain various items of work for construction of R.C.C. Slab culvert. \\
Items of Work for Construction of R.C.C Slab Culvert: - \\
1. Earthwork Excavation for foundation (For Abutments and for Wing Walls) \\
2. Cement Concrete in foundation with stone ballast. \\
3. \(1^{\text {st }}\) Class Brickwork in Cement Mortar for Abutments./ P.C.C for Abutments \\
4. R.C.C work for Slab \\
5. Cement Concrete Wearing Coat \\
6. Cement pointing in walls \\
7. Steel Bar Bending in R.C.C work \\
8. Construction for Wing Wall \\
9. Construction for Parapet Wall
\end{tabular} \& Any four points 1M each \\
\hline \[
\begin{aligned}
\& \text { Q.4. } \\
\& \text { A) }
\end{aligned}
\] \& \begin{tabular}{l}
An R.C.C Roof Slab of overall size \(6500 \times 3000 \mathrm{~mm}\) and thickness 150 mm is provided with 12 mm diameter main bars bent alternately along shorter span and placed \(150 \mathrm{mmc} / \mathrm{c}\). The distribution steel of \(\mathbf{6} \mathbf{m m}\) diameter along longer span is provided at \(200 \mathrm{~mm} \mathrm{c} / \mathrm{c}\). The all around cover is \(\mathbf{1 5 m m}\). Find out total quantity of steel. Prepare bar bending schedule. \\
Iotal length of main bar
\[
\begin{aligned}
\& =3000-(2 \times 15)+(2 \times 9 \times 12)+(0.42 \times 120) \\
\& =3236.4 \mathrm{~mm} \\
\& =3.2364 \mathrm{~m} .
\end{aligned}
\]
\end{tabular} \& \(1 M\)

$1 M$

\hline
\end{tabular}

SUMMER - 15 EXAMINATIONS
Subject Code: 17501
Model Answer- Estimating and costing
Page No- 11/25

SUMMER - 15 EXAMINATIONS

Subject Code: 17501
Model Answer- Estimating and costing
Page No- 12/25

SUMMER - 15 EXAMINATIONS

Subject Code: 17501
Model Answer- Estimating and costing

	SOLUTION				MARKS

Q .NO	SOLUTION	MARKS
Q.4.d)	Rate Analysis: The method of determining the rate of a particular item of work by Considering the quantities and cost of material and labour is called as rate analysis. Factors affecting Rate Analysis:- 1. Major Factors :- a) Material b) Labour 2. Minor Factors: -a) Special Equipment b) Place of work c) Nature of work d) Conditions of Contract e) Profit of the contractor f) Specification g) Site Condition h) Miscellaneous Major Factor:- a) Materials:- The material can be calculated by knowing the specification of the items. The price of various materials depends upon market conditions. The cost of material is taken as delivered at site inclusive of transport, local taxes, and other charges. For tools and plants and miscellaneous petty item which cannot be accounted in details lump sum provision is made. It is also necessary to include a certain percentage of waste of all materials to cover breakage, losses, cutting waste etc. b) Labour: - The labour force will be necessary to arrange the materials in proper way so that the items can be completed. The amount of labour force required to carry out a unit of a particular item is decided from past experience or in case of Complicated items it is decided by carrying out a sample of that item. The labour force required depends upon the efficiency of labourer hence this force will vary From place to place and also there prices. By knowing the amount of labour force and wages of laborer the cost of labour can be calculated	3M
Q. 5	Attempt any two of the following:	8 $\times 2=16$
a)	Explain the terms:	8 M
	i) Lead: The horizontal distance between the trench pit and the place where excavated earth is placed is called as lead. The unit of lead is 50 m for a distance upto 500 m , 500 m for a distance exceeding 500 m upto 5 km and 1 km for distance exceeds 5 km . ii) Lift: It is the depth of excavation or the vertical movement of material. Generally lift is taken as 1.5 m below ground level. Extra lift shall be measured in unit of 1.5 m or part thereof. iii) Task work: The capacity of a skilled labour to do the quantity of work per day called task work. Task work is depends on the nature, size, height, situation, location, climate condition, techniques adopted, wages paid.	02

$\begin{gathered} \mathbf{Q} \\ \text {.NO } \end{gathered}$	SOLUTION	MARKS
Q.5. c)	A RCC beam $230 \times 300 \mathrm{~mm}$ and length 3000 mm is reinforced with 3 no . of $12 \mathrm{~mm} \emptyset$ main bar placed in one row out of 3,2 bars are straight and one bar is bent up respectively. In addition to this 2 anchor bars of 10 mm dia. are provided at top. $6 \mathrm{~mm} \varnothing$ stirrups are provided at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. The overall cover provided to beam is 20 mm . Calculate total quantity of reinforcement (steel).	08 M
	Solution: Fig: Cross section and Longitudinal section of the beam given. Calculation of quantity of steel: 1) Top bars - 2 Nos.- $10 \mathrm{~mm} \phi$ $1-3000-20-20=2960 \mathrm{~mm}$ \qquad $\begin{aligned} \text { Length of top bar } & =(\text { Length }-2 \times \text { cover }+18 \times \text { hooks dia. }) \\ & =(3000-2 \times 20)+18 \times 10=3140 \mathrm{~mm} \end{aligned}$ 2) Bottom bars - 2 Nos. $-12 \mathrm{~mm} \phi$ \qquad $\begin{aligned} \text { Length of bottom bar } & =(\text { Length }-2 \times \text { cover }+18 \times \text { hooks dia. }) \\ & =(3000-2 \times 20)+18 \times 12=3176 \mathrm{~mm} \end{aligned}$ 3) Bent up bars - 1 Nos. $-12 \mathrm{~mm} \phi$	1/2

Q.NO	SOLUTION	MARKS
Q.5. c)	$\begin{aligned} \text { Length of bent up bars } & =(\text { length }-2 \times \text { cover })+(2 \times 0.42 \times D)+(18 \times \text { dia }) \\ & =(3000-2 \times 20)+(2 \times 0.42 \times 260)+(18 \times 12) \\ & =3394.4 \mathrm{~mm} \end{aligned}$ 4) Stirrups $-6 \mathrm{~mm} \phi 150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ $300-2 \times 20=260 \mathrm{~mm}$ $\|-230-2 \times 20=190 \mathrm{~mm}\|$ Length of 1 stirrup $=($ perimeter i.e. sum of all sides $)+24 \mathrm{~d}$ $\begin{aligned} & =(190 \times 2+260 \times 2)+24 \times 6 \\ & =1044 \mathrm{~mm} . \end{aligned}$	01

$\begin{gathered} \mathbf{Q} \\ . \mathrm{NO} \end{gathered}$	SOLUTION									MARKS
Q.5. c)	Bar bending schedule:									01
	$\begin{aligned} & \mathrm{Sr} . \\ & \mathrm{No} . \end{aligned}$	$\begin{aligned} & \hline \text { Description } \\ & \text { of bars } \end{aligned}$	$\begin{array}{\|c} \hline \text { Dia.Of } \\ \text { bar } \\ \mathbf{m m} \end{array}$	Shape of bar	Length of each bar m	No.	Total length m	$\begin{aligned} & \hline \text { Unit } \\ & \mathrm{wt} \\ & \mathbf{K g} / \\ & \mathbf{m t r} \end{aligned}$	$\begin{aligned} & \hline \text { Total } \\ & \text { wt. } \\ & \mathbf{k g} \end{aligned}$	
	1	Bottom bars	12		3.176	2	6.352	$\begin{aligned} & 12^{2} / 162 \\ & =0.88 \end{aligned}$	5.589	
	2	Bent up bars	12		3.394	1	3.394	$\begin{aligned} & 12^{2 / 162} \\ & =0.88 \end{aligned}$	2.986	01
	3	Top Bars	10		3.140	2	6.28	$\begin{aligned} & 10^{2} / 162 \\ & =0.62 \end{aligned}$	3.893	01
	4	Stirrups	6	$\left.\right\|_{230-2 \times 20=190 \mathrm{~mm}} \mid$	1.044	21	21.93	$\begin{aligned} & 6^{2} / 162 \\ & =0.22 \end{aligned}$	4.823	01
							Total	t.(kg)	17.29	

$\begin{gathered} \mathbf{Q} \\ . \mathrm{NO} \end{gathered}$	SOLUTION								$\begin{gathered} \text { MAR } \\ \text { KS } \end{gathered}$
a)	Sr. No Description of items and details of work $\mathbf{2}^{\text {nd }}$$1: 6$ class brick work in soak pit In upper portion in Lower portion 4 2 nd class dry brick work in soak pit Slab on septic tank 75 mm thick Finished including smooth reinforcement steel complete laid in position- Roof cover slab of septic tank Roof cover slab of soak pit baffle wall in septic tank		No.	Length (m)	Width (m)	Depth (m)	Qty	Explainatory notes	
			1 1	$\begin{aligned} & (\pi \times 1.20) \\ & (\pi \times 1.20) \end{aligned}$	$\begin{aligned} & x 0.20 \\ & \times 0.20 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.20 \\ & \hline \text { Total } \end{aligned}$	$\begin{array}{r} 0.38 \\ 0.15 \\ \hline 0.53 \end{array}$	Cu.m	1/2
			1	($\pi \times 1.20$)	X 0.20	2.50	1.88	Cu.m	1/2
			1 1 1	2.40 $\begin{aligned} & \left(\pi \times 1.40^{2}\right) / 4 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.30 \\ & x \\ & 0.04 \end{aligned}$	0.075 0.075 0.45 Total	0.234 0.115 0.018 0.367	7.5 cm thickness Cu.m	02

$\begin{gathered} \mathbf{Q} \\ . \mathrm{NO} \end{gathered}$	SOLUTION									MARKS
Q. 6 c)										
	$\begin{aligned} & \mathrm{Sr} \\ & \mathrm{No} \end{aligned}$	Description	No.	Length (m)	Width (m)	Depth (m)	$\begin{aligned} & \text { Qty } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$	Total Qty	Explainatory notes	
		Earth work in Excavation in hard rock a) $9-10.5 \mathrm{~m}$ b) $10.5-12 \mathrm{~m}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & (\pi / 4) \times 8.4^{2} \\ & (\pi / 4) \times 8.4^{2} \end{aligned}$	$\begin{gathered} x \\ x \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 83.12 \\ & 83.12 \end{aligned}$	$\begin{aligned} & 817.67 \\ & \text { Cu.m } \end{aligned}$		$11 / 2$
	2	UCR Masonry a) 60 cm thick portion	1	$\pi \times 9$	x0.60 x	X 2.7	45.80		$9=(8.4+9.6) / 2$	01
		b) 30 cm thick portion			$x 0.30 x$	X 7	57.39	$\begin{aligned} & 103.19 \\ & \text { cu.m } \end{aligned}$	$\begin{aligned} & 8.7=(8.4+9) / 2 \\ & 7=6+1 \end{aligned}$	01

