

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
Q. 1	(A)i) Ans	Define "Eccentric load with neat sketch. Eccentric loading: It is defined as load whose line of action does not coincide with the longitudinal axis of the member.	01 Mark 01 Mark
Q. 1	(A)ii) Ans	Write the values of maximum slope and deflection in case of simply supported beam with u.d.L. over the entire span in terms of El. Maximum slope $=\left(w \times L^{3}\right) /(24 \times$ EI $)$ at supports. Maximum deflection $=\left(5 \times w \times L^{4}\right) /(384 \times$ EI $)$ at midspan. \qquad	01 Mark 01 Mark
Q. 1	(A)iii) Ans	Write the differential equation for slope and deflection and state terms used in the equation. In the theory of simple bending, curvature of beam is expressed as - $1 / R=d^{2} y / d x^{2}$ For bending equation, $1 / R=M / E I$	

		$\begin{aligned} & \hline M / E I=d^{2} y / d x^{2} \\ & E I\left(d^{2} y / d x^{2}\right)=M_{x}--- \text { differential equation } \\ & \text { Where, } E=M o d u l u s \text { of elasticity. } \\ & I=\text { Moment of inertia of } C / S \text {. } \\ & M_{x}=\text { Bending moment at the section } X-X \text { in beam. } \end{aligned}$	01 Mark 01 Mark
Q. 1	(A)iv) Ans	State values of maximum slope and deflection for cantilever beam of span L carrying a point load at free end with meaning of each term. Maximum slope $=\left(\mathrm{WL}^{2}\right) / 2 \mathrm{El}$ at free end \qquad Maximum deflection $=\left(\mathrm{WL}^{3}\right) / 3 \mathrm{EI}$ at free end \qquad	01 Mark 01 Mark
Q. 1	(A)v) Ans	State any two disadvantage of fixed beam. i. A little sinking of one support over the other induces additional moment at each end. ii. Due to end fixity, temperature stresses are induced due to variation in temperature. iii. Extra care has to be taken to achieve perfect fixity at ends. iv. Frequent fluctuations in loading (moving loads) are likely to disturb end fixity. v. Practically it is difficult to produce 100% fixity.	Any Two 01 Mark Each
Q. 1	(A)vi) Ans	With sketch state the different types of portal frame. i. Symmetrical portal frame (Non sway type) ii. Unsymmetrical portal frame (Sway type)	01 Mark each
Q. 1	(A)vii) Ans	Define carry over moment and carry over factor. i. Carry over moment: It is defined as the moment induced at the far fixed end of beam by the action of the moment applied at the near simply supported or hinged end. ii. Carry over factor: It is the ratio of moment induced at far end to the moment applied at near end without displacing it.	01 Mark 01 Mark
Q. 1	(A)viii) Ans	List out different types of roof trusses any four. i. King post truss ii. Queen post truss iii. Simple fink truss iv. Compound fink truss v. Fan truss vi. Pratt truss vii. Howe truss viii. North light truss	Any Four $1 / 2$ Mark each
Q. 1	(B)i) Ans	Define core of a section and state middle third rule. i. Core of a section: It is defined as the region or area within which if load is applied, produces only compressive resultant stress. ii. Middle third rule: In case of rectangular cross section, if the load is applied at location along the middle third part of both mutually perpendicular axes then the stresses produced are wholly of compressive nature.	02 Marks 02 Marks

Q. 1	(B)ii) Ans	Draw resultant stress diagram for $\sigma_{0}<\sigma_{b}, \sigma_{0}=\sigma_{b}, \sigma_{0}>\sigma_{b}$. i) $\sigma_{0}<\sigma_{b}$ ii) $6_{0}=6_{b}$ iii) $6_{0}>6_{b}$ Where, $6_{0}=$ Direct stress and $6_{b}=$ Bending stress \qquad	01 Mark each for dia. 01 Mark
Q. 1	(B)iii) Ans Ans	a) State the assumptions in the analysis of frame. 1. All joints in frame are pinned or hinged. 2. Loads are applied at joints only. 3. Self-weight of members of frame is neglected. 4. Only axial forces (tensile and compressive) are induced in the member. b) Define redundant frame and state its condition. Redundant frame: It is the frame which cannot be anaysed internally using basic equations of equilibrium ($\Sigma \mathrm{M}_{\mathrm{A}}=0, \Sigma \mathrm{~F}_{\mathrm{x}}=0$ and $\Sigma \mathrm{F}_{\mathrm{y}}=0$). Condition: $m>(2 j-3)$ where, $m=$ Number of members and $j=$ No. of joints.	1/2 mark for each 01 Mark 01 Mark
Q. 2	a) Ans	A solid circular column of diameter 250 mm carries an axial load 'W' kN and a load of 200 kN at an eccentricity of 150 mm . Calculate minimum value of ' W ' so as to avoid the tensile stresses at base. $\begin{aligned} & A=\left(\pi \times 250^{2}\right) / 4=49087.38 \mathrm{~mm}^{2} \\ & M=P \times e=200 \times 10^{3} \times 150=3 \times 10^{7} \mathrm{~N}-\mathrm{mm} \\ & I=\left(\pi \times 250^{4}\right) / 64=1.917 \times 10^{8} \mathrm{~mm}^{4} \\ & y=D / 2=250 / 2=125 \mathrm{~mm} . \end{aligned}$ $\begin{aligned} \sigma_{0}=(W+P) / A & =\left(W+200 \times 10^{3}\right) / 49087.38 \\ \sigma_{b}=(M \times y) / I & =3 \times 10^{7} \times 125 / 1.917 \times 10^{8} \\ & =19.562 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ For no tension, $6_{0}=6_{b}$ $\begin{aligned} & \left(W+200 \times 10^{3}\right) / 49087.38=19.562 \\ & W=760238.3 N=760.24 \mathrm{kN} . \end{aligned}$	01 Mark 01 Mark 01 Mark 01 Mark

Q. 2	b) Ans	A rectangular column 300 mm wide and 200 mm thick carries an axial load of 250 kN and a clockwise moment of 5 kN m in plane bisecting 200 mm side, calculate resultant stresses induced at the base. Axial load $=P 250 \mathrm{kN}=250 \times 10^{3} \mathrm{~N}$ $B=200 \mathrm{~mm}, \mathrm{~d}=300 \mathrm{~mm}$ $A=200 \times 300=60000 \mathrm{~mm}^{2}$ $\mathrm{I}=200 \times 300^{3} / 12=4.5 \times 10^{8} \mathrm{~mm}^{4}$ $y=d / 2=300 / 2=150 \mathrm{~mm}$ $\mathrm{M}=5 \mathrm{kN}-\mathrm{m}=5 \times 10^{6} \mathrm{~N}-\mathrm{mm}$ $6_{0}=P / A=250 \times 10^{3} / 60000=4.16 \mathrm{~N} / \mathrm{mm}^{2}$ $\begin{aligned} 6_{b}=(\mathrm{M} \mathrm{xy}) / I & =5 \times 10^{6} \times 150 / 4.5 \times 10^{8} \\ & =1.67 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ $6_{\max }=6_{0}+6_{b}=4.16+1.67=5.83 \mathrm{~N} / \mathrm{mm}^{2}$ $6_{\min }=6_{0}-6_{b}=4.16-1.67=2.49 \mathrm{~N} / \mathrm{mm}^{2}$	01 Mark 01 Mark 01 Mark ½ Mark ½ Mark
Q. 2	c)	A masonry wall 10 m high, 3 m wide and 1.5 m thick is subjected to a wind pressure of 1.2 $\mathrm{kN} / \mathrm{m}^{2}$. Find maximum and minimum intensity induced on the base if the unit weight of masonry is $22 \mathrm{kN} / \mathrm{m}^{3}$. Area at base of wall $=3 \times 1.5=4.5 \mathrm{~m}^{2} \quad$ Height of wall $(\mathrm{h})=10 \mathrm{~m}$, Unit weight of material $(\sigma)=22 \mathrm{kN} / \mathrm{m}^{3}$ Weight of wall $(\mathrm{W})=22 \times 4.5 \times 10=990 \mathrm{kN}$. $\begin{aligned} \sigma_{0} & =\sigma h & \text { OR } & \sigma_{0} \end{aligned}=\mathrm{W} / \mathrm{A} .$ \qquad Wind force $(P)=$ Wind pressure $\times b \times h$ $=1.2 \times 3 \times 10=36 \mathrm{kN}$ \qquad	01 Mark ½ Mark 1/2 Mark 1/2 Mark 1/2 Mark 1/2 Mark ½ Mark
Q. 2	d) Ans	A wooden cantilever beam of span 2.5 m has a cross section 130 mm wide and 240 mm deep. A load of 6 kN is acting at free end, calculate the deflection and slope at free end take $\mathrm{E}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. $\mathrm{b}=130 \mathrm{~mm}, \mathrm{~d}=240 \mathrm{~mm}$, Span $=2.5 \mathrm{~m} .=2500 \mathrm{~mm}$ $\mathrm{E}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \quad \mathrm{I}=130 \times 240^{3} / 12=1.4976 \times 10^{8} \mathrm{~mm}^{4} \quad \mathrm{~W}=6 \mathrm{kN}=6000 \mathrm{~N}$ Slope at free end $=W L^{2} / 2 E I$ $=6000 \times 2500^{2} /\left(2 \times 1 \times 10^{5} \times 1.4976 \times 10^{8}\right)=1.252 \times 10^{-3} \mathrm{rad}$ $\begin{aligned} \text { Deflection at free end } & =\mathrm{WL}^{3} / 3 \mathrm{EI} \\ & =6000 \times 2500^{3} /\left(3 \times 1 \times 10^{5} \times 1.4976 \times 10^{8}\right)=2.087 \mathrm{~mm} . \end{aligned}$	01 Mark ½ Mark 01 Mark ½ Mark 01 Mark

Q. 2	e) ${ }^{\text {Ans }}$	A simply supported beam of span 4 m carries a central point load of 20 kN and u.d.L. of $10 \mathrm{kN} / \mathrm{m}$ over entire span. Find maximum slope and maximum deflection of the beam $\mathrm{I}_{\mathrm{xx}}=2 \times 10^{8} \mathrm{~mm}^{4} \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	01 Mark 01 Mark 01 Mark 01 Mark
Q. 2	$\begin{aligned} & \hline \text { f) } \\ & \text { Ans } \end{aligned}$	State the effect of continuity on the continuous beam. Explain with sketch. Effects of continuity are as follows. i. Produces support moment of hogging nature. ii. Reduces bending moment along the span. iii. Reduces deflection and increases load carrying capacity. iv. Sagging moment occurs at mod span.	02 Marks 02 Marks
Q. 3	a) Ans	A simply supported beam of span 9 m carries two point loads of equal magnitude 36 kN at 3 m from both ends. Calculate values of integration constant and write Macaulay's slope and deflection equation. Calculation of Reactions: $\begin{aligned} & \Sigma M_{A}=0 \\ & 36 \times 3+36 \times 6-R_{B} \times 9=0 \\ & R_{B}=(108+216) / 9 \\ &=36 \mathrm{kN} . \\ & R_{A}=72-36=36 \mathrm{kN} . \end{aligned}$ Taking section $\mathrm{X}-\mathrm{X}$ at distance ' x ' from A . Integrating $\text { Eldy } / \mathrm{d} \mathbf{x}=\left(-36 \mathbf{x} x^{2}\right) / 2+\left[36(x-3)^{2}\right] / 2+\left[36(x-6)^{2}\right] / 2+\mathrm{C}_{1}$ \qquad	01 Mark

		Integrating $\text { Ely }=\left(-18 \times x^{3}\right) / 3+\left[18(x-3)^{3}\right.$ At $x=0 ; \mathrm{y}=0$ in eq${ }^{\mathrm{n}} .2$ $\begin{aligned} & 0=0+C_{2} \\ & C_{2}=0 \end{aligned}$ At $x=9 ; \mathrm{y}=0$ in eq ${ }^{\mathrm{n}} .2$ $\begin{aligned} & 0=\left(-18 \times 9^{3}\right) / 3+\left[18(9-3)^{3}\right] / 3 \\ & C_{1}=324 \end{aligned}$ Hence $\mathrm{C}_{1}=324$ and $\mathrm{C}_{2}=0$ Slope equation: $\mathrm{dy} / \mathrm{d} \mathrm{x}=1 / \text { EII }\left(-18 \mathrm{x} x^{2}\right)+18(x$ Deflection equation: $y=1 / \text { EI }\left[\left(-6 \mathbf{x} x^{3}\right)+6(x-3)^{3}+\right.$	$] / 3+\left[18(x-6)^{3}\right] / 3+C_{1} x+C_{2}-\cdots-\cdots-\cdots----2$ $+\left[18(9-6)^{3}\right] / 3+C_{1} \times 9+0$ $\begin{aligned} & \left.-3)^{2}+18(x-6)^{2}+324\right] \\ & \left.6(x-6)^{3}\right]+324 x \end{aligned}$	01 Mark 01 Mark 01 Mark
Q. 3	b) Ans	A simply supported beam of 6 m span carries support. Calculate deflection below point load in terms Reactions: $\begin{aligned} \Sigma \mathrm{M}_{\mathrm{A}} & =0 \\ & =60 \times 2-\mathrm{R}_{\mathrm{B}} \times 6 \\ \mathrm{R}_{\mathrm{B}} & =120 / 6=20 \mathrm{kN} . \\ \mathrm{R}_{\mathrm{A}} & =60-230=40 \mathrm{kN} . \end{aligned}$	a point load of 60 kN at 2 m from left of El use Macaulay's method.	01 Mark
		Taking section $\mathrm{X}-\mathrm{X}$ at distance ' x ' from A $\begin{aligned} & \mathrm{M}_{\mathrm{x}}=40 \mathrm{x} x-60(x-2) \\ & \mathrm{Eld}^{2} \mathrm{y} / \mathrm{dx}^{2}=-\mathrm{M} \mathrm{x} \\ & = \\ & =-40 \mathbf{x} x+60(x-2) \end{aligned}$ Integrating $\text { Eldy } / \mathrm{d} \mathrm{x}=\left(-40 \times x^{2}\right) / 2+\left[60(x-2)^{2}\right] / 2+\mathrm{C}_{1}$ Integrating $\text { Ely }=\left(-20 \times x^{3}\right) / 3+\left[30(x-2)^{3}\right] / 3+\mathrm{C}_{1} x+$ C_{2} At $x=0 ; \mathrm{y}=0$ in Ely eq ${ }^{\mathrm{n}}$. $\begin{aligned} & 0=0+C_{2} \\ & C_{2}=0 \end{aligned}$ At $x=6 ; \mathrm{y}=0$ in Ely eq ${ }^{\mathrm{n}}$. $\begin{aligned} & 0=\left(-20 \times 6^{3}\right) / 3+\left[10(9-2)^{3}\right]+C_{1} \times 6+0 \\ & C_{1}=133.33 \end{aligned}$ Hence $C_{1}=133.33$ and $C_{2}=0$	Taking section $\mathrm{X}-\mathrm{X}$ at distance ' x ' from B $\begin{aligned} & \mathrm{M}_{\mathrm{x}}=20 \mathrm{x} x-60(x-4) \\ & \mathrm{Eld}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2}=-\mathrm{M} \mathrm{x} \\ & =-20 \mathrm{x} x+60(x-4) \end{aligned}$ Integrating $\text { Eldy } / \mathrm{dx}=\left(-20 \times x^{2}\right) / 2+\left[60(x-4)^{2}\right] / 2+\mathrm{C}_{1}$ Integrating $\text { Ely }=\left(-10 \times x^{3}\right) / 3+\left[30(x-4)^{3}\right] / 3+\mathrm{C}_{1} x+$ C_{2} At $x=0 ; \mathbf{y}=0$ in Ely eq ${ }^{\text {n }}$. $\begin{aligned} & 0=0+C_{2} \\ & C_{2}=0 \end{aligned}$ At $x=6 ; y=0$ in Ely eq ${ }^{\text {n }}$. $\begin{aligned} & 0=\left(-10 \times 6^{3}\right) / 3+\left[10(9-4)^{3}\right]+C_{1} \times 6+0 \\ & C_{1}=106.67 \\ & \text { Hence } C_{1}=106.67 \text { and } C_{2}=0 \end{aligned}$	01 Mark

			01 Mark 01 Mark
Q. 3		State how B. M. is find out for a fixed beam using super position theorem. Explain it with sketch. After calculating fixed end moments and simply supported bending moments, draw fixed end moment diagram and superimpose simply supported bending moment diagram over it as shown in fig below. Let net bending moment at 1 and 2 are m_{1} and m_{2} respectively. Calculate y_{1} and y_{2} by interpolation. Then $m_{1}=M_{1}-y_{1}$ and $m_{2}=M_{2}-y_{2}$	02 Marks 02 Marks
Q. 3	d) Ans	Using first principle find fixed end moment for a fixed beam carrying point load at mid span. Due to symmetry, $\mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}}$ Area of S. S. B. M. Dia. $=a_{1}=0.5 \times L \times W L / 4=W^{2} / 8$ Area of F. E. M. Dia. $=\mathrm{M}_{\mathrm{A}} \times \mathrm{L}$ Area of simply supported bending moment diagram = Area of fixed end moment diagram $\begin{aligned} & W L^{2} / 8=M_{A} \times L \\ & \text { Hence } M_{A}=W L / 8 \quad \text { And } \quad M_{B}=W L / 8 \end{aligned}$	01 Mark 01 Mark 01 Mark 01 Mark
Q. 3	e) Ans	Explain imperfect and perfect frame in detail. Perfect frame: It is the simple frame in which number of joints (j) and number of members (m) satisfies the equation $m=2 j-3$. Such frames are internally determinate i.e. can be analysed by using basic equations of equilibrium ($\Sigma \mathrm{M}_{\mathrm{A}}=0, \Sigma \mathrm{~F}_{\mathrm{x}}=0$ and $\Sigma \mathrm{F}_{\mathrm{y}}=0$).	02 Marks

Q. 4		State Clapeyron's theorem and also write the Clapeyron's three moment theorem for beam with different moment of inertial giving meaning of each term. Clapeyrons theorem: For two span continuous beam having uniform moment of inertia supported at A, B, and C and subjected to any external loading, the support moments M_{A}, M_{B} and M_{C} at the supports A, B and C respectively are given by the relation, $M_{A} \times L_{1}+2 M_{B}\left(L_{1}+L_{2}\right)+M_{C} \times L_{2}=-\left[\left(6 \mathbf{x} a_{1} \mathbf{x} x_{1} / L_{1}\right)+\left(6 \mathbf{x} a_{2} \times x_{2} / L_{2}\right)\right]$ If moment of inertia is not constant then Clapeyrons theorem can be stated in form of following equation. $M_{A} \mathrm{x}\left(\mathrm{~L}_{1} / I_{1}\right)+2 M_{B}\left[\left(\mathrm{~L}_{1} / I_{1}\right)+\left(\mathrm{L}_{2} / I_{2}\right)\right]+\mathrm{M}_{\mathrm{C}} \times\left(\mathrm{L}_{2} / I_{2}\right)=-\left[\left(6 \mathbf{x} \mathrm{a}_{1} \mathbf{x} x_{1} / L_{1} I_{1}\right)+\left(6 \mathbf{x} \mathrm{a}_{2} \mathbf{x} x_{2} / L_{2} I_{2}\right)\right]$ Where, $L_{1} \& L_{2}$ are length of span $A B \& B C$ resp. $I_{1} \& I_{2}$ are Moment of inertia of span $A B \& B C$ resp. $a_{1} \& a_{2}$ are area of simply supported $B M D$ of span $A B \& B C$ resp. $x_{1} \& x_{2}$ are distances of centroid of simply supported BMD from $\mathrm{A} \& \mathrm{C}$ resp.	02 Marks 01 Mark 01 Mark
Q. 4	b) Ans	Explain the concept of imaginary zero span in case of Clapeyron's theorem. When the ends of continuous beam are fixed, then an imaginary span is considered to the left or right of the fixed support as the case may be and Clapeyrons theorem is applied to the imaginary span and its adjescent span as per regular procedure. If left end is fixed then consider imaginary span left of this support and If right end is fixed then consider imaginary span on right side of that support. Clapeyrons theorem is applied as below. $A_{0}-A$ is imaginary span left to fixed end A. For span $A_{0}-A$ and $A B$ $\begin{aligned} & M_{A 0} \times L_{0}+2 M_{A}\left(L_{0}+L_{1}\right)+M_{B} \times L_{1}=-\left[\left(6 \times a_{0} \times x x_{0} / L_{0}\right)+\left(6 \times a_{1} \times x{ }_{1} / L_{1}\right)\right] \\ & 0+2 M_{A}\left(L_{1}\right)+M_{B} \times L_{1}=-\left[0+\left(6 \times a_{1} \times x x_{1} / L_{1}\right)\right] \end{aligned}$ Where $M_{A 0}, L_{0}$ and X_{0} are terms related to imaginary span.	02 Marks 01 Mark 01 Mark
Q. 4	c)	A beam $A B C$ is supported at A, B and C span $A B$ and $B C$ are of lengths $3 m$ and $4 m$ respectively. $A B$ carries a u.d.L. of $15 \mathrm{kN} / \mathrm{m}$ over entire span and $B C$ carries central point load of 30 kN . Calculate support moment at B using three moment theorem.	01 Mark

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

									01 Mark 01 Mark 01 Mark

Q. 5	c)	Using method of section find forces in members BC, BE and EF and EC for truss shown in Fig.State nature of forces tabulate results. Reactions: $\begin{aligned} & \Sigma \mathrm{M}_{\mathrm{A}}=0=50 \times 3-10 \times 3-\mathrm{R}_{\mathrm{D}} \times 9 \\ & \mathrm{R}_{\mathrm{D}}=13.33 \mathrm{kN} \\ & \mathrm{R}_{\mathrm{AV}}=50-13.33=36.67 \mathrm{kN} \\ & \Sigma \mathrm{~F}_{\mathrm{V}}=0 \\ & \mathrm{R}_{\mathrm{AH}}-10=0 \\ & \mathrm{R}_{\mathrm{AH}}=10 \mathrm{kN} \end{aligned}$ Taking section along EF, EC and BC Assuming all forces Tensile Taking moment @ C; $-13.33 \times 3-10 \times 10-\mathrm{F}_{\mathrm{EF}} \times 3=0$ $\mathrm{F}_{\mathrm{EF}}=-23.33$ i.e. 23.33 kN (Compressive) Taking moment @ E; $\mathrm{F}_{C B} \times 3-13.33 \times 6=0$ $\mathrm{F}_{\mathrm{CB}}=26.67 \mathrm{kN}$ (Tensile) $\Sigma \mathrm{F}_{\mathrm{V}}=0=13.33+\mathrm{F}_{\mathrm{CE}} \sin 45$ $\mathrm{F}_{\mathrm{CE}}=-18.85$ i.e. 18.85 kN (Compressive) Taking section along EF, EC, EB and BA $\begin{gathered} \Sigma \mathrm{F}_{\mathrm{v}}=0=13.33-18.85 \sin 45+\mathrm{F}_{\mathrm{BE}} \\ \mathrm{~F}_{\mathrm{BE}}=0 \end{gathered}$	01 Mark 01 Mark 02 Marks 01 Mark 01 Mark

(ISO/IEC - 27001-2013 Certified)

		Member	Force	Nature	02 Marks
		BC	26.67 kN	Tensile	
		BE	0	--	
		EF	23.33 kN	Compressive	
		EC	18.85 kN	Compressive	
Q. 6	a) Ans	A simply supported beam of 6 m span carries an u.d.I. of $20 \mathrm{kN} / \mathrm{m}$ over entire beam and a point load of 60 kN at 2 m from right hand support using Macaulay's method, locate the point of maximum deflection and find its value in terms of El . Reactions: $\begin{aligned} & \Sigma \mathrm{M}_{\mathrm{A}}=0 \\ & 60 \times 4+20 \times 6 \times 3-\mathrm{R}_{\mathrm{B}} \times 6=0 \\ & \mathrm{R}_{\mathrm{B}}=(240+360) / 6 \\ & \quad=100 \mathrm{kN} . \\ & \mathrm{R}_{\mathrm{A}}=20 \times 6+60-100=80 \mathrm{kN} . \end{aligned}$ Taking section $\mathrm{X}-\mathrm{X}$ at distance ' x ' from B . $\begin{aligned} & \mathrm{M}_{\mathrm{x}}=100 \mathrm{x} x-60(x-2)-20 \mathrm{x} x^{2} / 2 \\ & \mathrm{Eld}^{2} \mathrm{y} / \mathrm{d} \mathrm{x}^{2} \end{aligned}=-\mathrm{M}_{\mathrm{x}} .$ Integrating $\text { Eldy } / \mathrm{dx}=\left(-100 \times x^{2} / 2\right)+\left[60(x-2)^{2} / 2\right]+10 \times x^{3} / 3+C_{1}----------1$ Integrating $\text { Ely }=\left(-50 \times x^{3} / 3\right)+\left[30(x-2)^{3} / 3\right]+10 \times x^{4} / 12+C_{1} x+C_{2}-\cdots-\cdots------2$ At $x=0 ; \mathrm{y}=0$ in $\mathrm{eq}^{\mathrm{n}} .2$ $0=0+C_{2}$ $C_{2}=0$ At $x=6 ; \mathrm{y}=0$ in $\mathrm{eq}^{\mathrm{n}} .2$ $\begin{aligned} & 0=\left(-50 \times 6^{3} / 3\right)+\left[30(6-2)^{3} / 3\right]+10 \times 6^{4} / 12+C_{1} 6+C_{2} \\ & C_{1}=313.33 \end{aligned}$ Hence $\mathrm{C}_{1}=313.33$ and $\mathrm{C}_{2}=0$ Slope equation: $\mathrm{dy} / \mathrm{dx}=1 / \mathrm{EI}\left(-50 \times x^{2}\right)+\left[30(x-2)^{2}\right]+10 \times x^{3} / 3+313.33$ Deflection equation: $\mathrm{y}=1 / \mathrm{EI}\left(-50 \times x^{3} / 3\right)+\left[10(x-2)^{3}\right]+10 \times x^{4} / 12+313.33 x-----------\quad \text { II }$ Deflection is maximum where slope changes the sign i.e. slope $=0$ Maximum deflection will be in between A and C Hence, $6>x>2$ Equating Equ ${ }^{n}$ I with zero. $\begin{aligned} 0 & =1 / E I\left(-50 \times x^{2}\right)+\left[30(x-2)^{2}\right]+10 \times x^{3} / 3+313.33 \\ & =-50 \times x^{2}+30 x^{2}-120 x+120+10 \times x^{3} / 3+313.33 \end{aligned}$			01 Mark

