

	(ISO/IEC - 2/001 - 2013 Certaired)					
		W	/INTER- 17 EXAMINATION	l		
S	ubject Na	ame: Theory of Structures	Model Answer	Subject Code:	17422	
Impo	rtant Ins	tructions to examiners:				
1)	The an scheme	swers should be examined by e.	key words and not as wo	ord-to-word as given i	n the model an	iswer
2)	The mo unders	odel answer and the answer wr tanding level of the candidate.	itten by candidate may var	ry but the examiner m	nay try to asses	s the
3)	The lar applica	nguage errors such as grammed ble for subject English and Cor	natical, spelling errors sho mmunication Skills.	ould not be given mo	ore Importance	(Not
4)	4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn					
5)	Credits may va	may be given step wise for r and there may be some diffe	numerical problems. In some some some some some some some some	me cases, the assum inswers and model ar	ned constant va iswer.	alues
6)	In case based (e of some questions credit ma on candidate's understanding.	iy be given by judgement	on part of examiner	of relevant an	iswer
7)	For pro	ogramming language papers, it.	credit may be given to a	any other program b	ased on equiv	alent
Q.	Sub		Answer			Marking
No.	Q. N.					Scheme
Q.1	(A)i)	Define "Eccentric load with ne	eat sketch.			
	Ans	Eccentric loading: It is defined longitudinal axis of the memb	l as load whose line of actioner.	on does not coincide	with the	01 Mark

P
Axis of member

Q.1	(A)ii)	Write the values of maximum slope and deflection in case of simply supported beam with	
		u.d.L. over the entire span in terms of El.	
	Ans	w kN/m	

		Maximum slope = $(w \times L^3) / (24 \times EI)$ at supports	01 Mark
		Maximum deflection = (5 x w x L ⁴) / (384 x El) at midspan	01 Mark
Q.1	(A)iii)	Write the differential equation for slope and deflection and state terms used in the	
		equation.	
	Ans	In the theory of simple bending, curvature of beam is expressed as –	
		$1/R = d^2y/dx^2$	
		For bending equation, 1 / R = M / EI	

01 Mark

			1
		$M / EI = d^2 y / dx^2$	01 Mark
		$EI(d^2y/dx^2) = M_x differential equation$	
		Where, E = Modulus of elasticity.	
		I = Moment of inertia of C/S.	01 Mark
		M _x = Bending moment at the section X-X in beam.	
Q.1	(A)iv)	State values of maximum slope and deflection for cantilever beam of span L carrying a	
		point	
	Ans	load at free end with meaning of each term.	
		W	
		Maximum slope = $(Wl^2) / 2EL$ at free end	01 Mark
			01.04.1
		Maximum deflection = (WL ³) / 3EI at free end	01 Mark
Q.1	(A)v)	State any two disadvantage of fixed beam.	
	Ans	i. A little sinking of one support over the other induces additional moment at each	
		end.	
		ii. Due to end fixity, temperature stresses are induced due to variation in	Any Two
		temperature.	, 01 Mark
		iii. Extra care has to be taken to achieve perfect fixity at ends.	Each
		iv. Frequent fluctuations in loading (moving loads) are likely to disturb end fixity.	
		v. Practically it is difficult to produce 100% fixity.	
Q.1	(A)vi)	With sketch state the different types of portal frame.	
	Ans	i. Symmetrical portal frame (Non sway type) ii. Unsymmetrical portal frame (Sway type)	
		w	01 Mark
			each
	(
Q.1	(A)VII)	Define carry over moment and carry over factor.	
	Ans	I. Carry over moment: It is defined as the moment induced at the far fixed end of	04.84
		beam by the action of the moment applied at the hear simply supported or	01 Mark
		II. Carry over factor: It is the ratio of moment induced at far end to the moment	01 Marti
0.1	(^), (iii)	applied at near end without displacing it.	
Q.1	(A)VIII)	List out unterent types of foor trusses any four.	1/ Mark
	Ans	1. King post truss II. Queen post truss III. Simple link truss IV. Compound link truss	⁷ 2 IVIdI K
0.1	(D):)	V. Fail (1055 VI. Ffall (1055 VII. Flowe (1055 VIII. NOT(1) light (1055	eacii
Q.1	(B)I) Arca	Define core of a section and state middle third rule.	
	ANS	I. Core of a section: It is defined as the region or area within which if load is applied,	02 14-1
		produces only compressive resultant stress.	U2 Marks
		II. IVIIGGIE THIRG RULE: IN CASE OF RECTANGULAR CROSS SECTION, IF THE load is applied at	02.84
		location along the middle third part of both mutually perpendicular axes then	U2 Marks
		the stresses produced are wholly of compressive nature.	

.0.8	07_1	AC HAIL	
Ű.	-		Lon
2		7	Ì
100	Avn . :	Vande	

Q.2	b)	A rectangular column 300 mm wide and 200 mm thick carries an axial load of 250 kN and a			
		clockwise moment of 5 kN m in plane bisecting 200 mm side, calculate resultant stresses			
		induced at the base.			
	Ans	Axial load = P 250 kN = 250 x 10^3 N			
		B = 200 mm, d = 300 mm			
		$A = 200 \times 300 = 60000 \text{ mm}^2$	01 Mark		
		$I = 200 \times 300^3 / 12 = 4.5 \times 10^8 \text{ mm}^4$			
		y = d / 2 = 300 / 2 = 150 mm			
		$M = 5 \text{ kN-m} = 5 \times 10^6 \text{ N-mm}$			
		$6_0 = P / A = 250 \times 10^3 / 60000 = 4.16 \text{ N/mm}^2$	01 Mark		
		$6_{b} = (M \times y) / I = 5 \times 10^{6} \times 150 / 4.5 \times 10^{8}$	01 Mark		
		$= 1.67 \text{ N/mm}^2$			
		$6_{max} = 6_0 + 6_h = 4.16 + 1.67 = 5.83 \text{ N/mm}^2$	½ Mark		
		$6_{min} = 6_0 - 6_b = 4.16 - 1.67 = 2.49 \text{ N/mm}^2$	½ Mark		
Q.2	c)	A masonry wall 10 m high, 3 m wide and 1.5m thick is subjected to a wind pressure of 1.2			
		kN/m ² . Find maximum and minimum intensity induced on the base if the unit weight of			
		masonry is 22kN/m ³ .			
	Ans	Area at base of wall = $3 \times 1.5 = 4.5 \text{ m}^2$ Height of wall (h) = 10 m,			
		Unit weight of material (σ) = 22 kN/m ³ Weight of wall (W) = 22 x 4.5 x 10 = 990 kN.			
		$6_0 = \sigma h$ OR $6_0 = W / A$			
		$= 22 \times 10 = 220 \text{ kN/m}^2$ $= 990 / 4.5 = 220 \text{ kN/m}^2$	01 Mark		
		$I = 3 \times 1.5^3 / 12 = 0.84375 \text{ m}^4$ $v = 1.5 / 2 = 0.75 \text{ m}^3$	1/2 Mark		
		Wind force (P) = Wind pressure x b x h			
		= 1.2 x 3 x 10 = 36 kN	1/2 Mark		
		-			
		Moment @ base (M) = $P \times h/2$			
		$= 36 \times 10 / 2 = 180 \text{ kN-m}$	1/2 Mark		
		$6_{\rm h} = (M \times v) / I = 180 \times 0.75 / 0.84375 = 160 \text{ kN/m}^2$	1/2 Mark		
		$6_{max} = 6_0 + 6_b = 220 + 160 = 380 \text{ kN/m}^2$	1/2 Mark		
		$6_{\text{min}} = 6_0 - 6_{\text{b}} = 220 - 160 = 60 \text{ kN/m}^2$	1/2 Mark		
0.2	d)	A wooden cantilever beam of span 2.5 m has a cross section 130 mm wide and 240 mm			
	.,	deep. A load of 6 kN is acting at free end, calculate the deflection and slope at free end			
		take $F = 1 \times 10^5 \text{ N/mm}^2$.			
	Ans	b = 130 mm, d = 240 mm, Span = 2.5 m = 2500 mm			
		$E = 1 \times 10^5 \text{ N/mm}^2$ $I = 130 \times 240^3 / 12 = 1.4976 \times 10^8 \text{ mm}^4$ $W = 6 \text{ kN} = 6000 \text{ N}$	01 Mark		
		Slope at free end = $WL^2 / 2EI$	½ Mark		
		$= 6000 \times 2500^2 / (2 \times 1 \times 10^5 \times 1.4976 \times 10^8) = 1.252 \times 10^{-3} \text{ rad}$	01 Mark		
		Deflection at free end = $WL^3 / 3EI$	½ Mark		
		$= 6000 \times 2500^3 / (3 \times 1 \times 10^5 \times 1.4976 \times 10^8) = 2.087 \text{ mm}.$	01 Mark		

0.2	- 1	A simply such a start has a farmer A an equipped a start had a f 20 (b) and u d L of				
Q.2	e)	A simply supported beam of span 4 m carries a central point load of 20 kN and u.d.L. of				
		10 kN/m over entire span. Find maximum slope and maximum deflection of the beam				
		$I_{xx}=2 \times 10^{\circ} \text{mm}^{2} \text{ E}= 2 \times 10^{\circ} \text{N/mm}^{2}$.				
	Ans	w=10 kN/m				
		4m				
		$EI = 2 \times 10^8 \times 2 \times 10^5 = 4 \times 10^{13} \text{ N-mm}^2$				
		Maximum slope = $(W \times L^2 / 16EI)_{P,L} + (W \times L^3 / 24EI)_{U,D,L}$ at supports	01 Mark			
		$= (20000 \times 4000^{2}) / (16 \times 4 \times 10^{13}) + (10 \times 4000^{3}) / (24 \times 4 \times 10^{13}).$				
		$= 5 \times 10^{-4} + 6.66 \times 10^{-4}$				
		$= 1.166 \times 10^{-3}$ rad	01 Mark			
		Maximum deflection = $(W \times I^3 / 48EI)_{0.1} + (5 \times W \times I^4 / 384EI)_{0.0}$ at mid-span	01 Mark			
		$-(20000 \times 4000^{3} / 48 \times 4 \times 10^{13}) + (5 \times 10 \times 4000^{4} / 384 \times 4 \times 10^{13})$				
		$= (20000 \times 4000) + (3 \times 10) + (3 \times 10 \times 4000) + (3 \times 10) + (3 \times 10 \times 4000) + (3 \times 10) + (3 \times 10 \times 4000) + (3 \times 10 \times 10 \times 10^{-1}) + (3 \times 1$	01 Mark			
0.2	f)	$-0.00 \pm 0.85 - 1.49$ [1]	ULIVIAIK			
Q.Z	1)	State the effect of continuity of the continuous beam. Explain with sketch.				
	AIIS	A	02 Marks			
		В				
		Deflected shape —				
		Effects of continuity are as follows				
		i Produces support moment of begging nature				
		i. Produces support moment of nogging nature.	02 Marks			
		II. Reduces bending moment along the span.				
		iii. Reduces deflection and increases load carrying capacity.				
• •	,	IV. Sagging moment occurs at mod span.				
Q.3	a)	A simply supported beam of span 9 m carries two point loads of equal magnitude 36 kN at				
		3 m from both ends. Calculate values of integration constant and write Macaulay's slope				
		and deflection equation.				
	Ans	36 kN 36 kN X				
		A B				
		X				
		Calculation of Reactions:				
		$\Sigma M_A = 0$ OR Due to symmetry,				
		$36 \times 3 + 36 \times 6 - R_B \times 9 = 0 \qquad \qquad R_A = R_B = 72 / 2$				
		$R_{B} = (108 + 216) / 9 = 36 \text{ kN}.$				
		= 36 kN.				
		$R_A = 72 - 36 = 36 \text{ kN}.$				
		Taking section X-X at distance 'x' from A.				
		$M_x = 36 \times x - 36(x - 3) - 36(x - 6)$				
		$Eld^2v/dx^2 = -Mx$	01 Mark			
		$= -36 \times x + 36(x - 3) + 36(x - 6)$				
		$[dy/dy - (-36 \times x^2)/2 + [26/x - 2)^2]/2 + [26/x - 6)^2]/2 + C$				
		$E(uy)(ux - (-50 x u))(2 + (50(u - 5)))(2 + (50(u - 6)))(2 + C_1) 1$				

	1			
		Integrating		
		$Ely = (-18 \times x^3)/3 + [18(x - 3)^3]$	$\frac{1}{3} + \frac{18(x - 6)^{3}}{3} + C_{1}x + C_{2} - \dots 2$	
		At $x = 0$; y = 0 in eq''. 2		
		$0 = 0 + C_2$		
		$C_2 = 0$		
		At $x = 9$; $y = 0$ in eq. 2		
		$0 = (-18 \times 9^{\circ})/3 + [18(9 - 3)^{\circ}]/3$	$(3 + [18(9 - 6)^{\circ}]/3 + C_1 \times 9 + 0$	
		$C_1 = 324$		01 Mark
		Slope equation:		
		$dy/dx = 1/E[(-18 \times r^2) + 18(r)]$	$(-3)^{2} + 18(r - 6)^{2} + 324$	
		Deflection equation:	5) · 10(2 0) · 524]	01 Mark
		$y = 1/EI[(-6 \times x^3) + 6(x - 3)^3 +$	$6(x - 6)^3 + 324x$	01 Mark
03	b)	$\int \frac{1}{2} \int \frac{1}{2} \left[\left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right]$	a point load of 60 kN at $2m$ from left	UT IVIAI K
Q.5	5)	support.		
	Ans	Calculate deflection below point load in terms	s of EI use Macaulay's method.	
	_	v	· · · · · · · · · · · · · · · · · · ·	
		60 kN X	X 60 kN	
		CT OR	c	
		RA=40 kN ^{2m} 4m RB=20 kN	RA=40 kN ² m 4m	
		x x	<u>RB</u> =20 kN	
		Reactions	X	
		$\Sigma M_{A} = 0$		
		$= 60 \times 2 - R_B \times 6$		01 Mark
		$R_{B} = 120 / 6 = 20 \text{ kN}.$		
		R _A = 60 – 230 = 40 kN.		
		Taking section X-X at distance x from A	Taking section X-X at distance x from B	
		$M_x = 40 \times x - 60(x - 2)$	$M_x = 20 \times x - 60(x - 4)$	
		$EId^{-}y/dx^{-} = -Mx$	$EId^{-}y/dx^{-} = -Mx$	
		$= -40 \times x + 60(x - 2)$	$= -20 \times x + 60(x - 4)$	
		Integrating	Integrating $(-20 \times m^2)/2 + [CO(m-4)^2]/2 + C$	01 Mark
		Eldy/dx = (- 40 x x)/2 + [60($x - 2$)]/2 + C ₁	$EIGY/dx = (-20 x x)/2 + [60(x - 4)]/2 + C_1$	
		[1111291a(1119)]	$\frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2$	
		$[10] = (-20 \times 1)/3 + [30(1 - 2)]/3 + C_1 + C_1$	$Eiy = (-10 \times x)/3 + [50(x - 4)]/3 + C_1 x + C_2 x$	
		C_2 At $x = 0$, $y = 0$ in Ely co^n	C_2 At $x = 0$, $y = 0$ in Ely aa^n	
		0 - 0 + 0	$0 - 0 + C_{\alpha}$	
		$C_2 = 0$	$C_2 = 0$	
		At $x = 6$; $y = 0$ in Elv ea ⁿ .	At $x = 6$; y = 0 in Elv ea ⁿ .	
		$0 = (-20 \times 6^3)/3 + [10(9 - 2)^3] + C_1 \times 6 + 0$	$0 = (-10 \times 6^3)/3 + [10(9 - 4)^3] + C_1 \times 6 + 0$	
		$ C_1 = 133.33$	$C_1 = 106.67$	
		Hence $C_1 = 133.33$ and $C_2 = 0$	Hence $C_1 = 106.67$ and $C_2 = 0$	

		Deflection equation-	Deflection equation-	
		$y = (1/EI)[(-20 \times x^3)/3+10(x - $	$y = (1/EI)[(-10 \times x^3)/3+10(x - $	
		$(2)^{3}+133.33x$	4) ³ +106.67 <i>x</i>]	01 Mark
		For deflection under load	For deflection under load	
		Put $x = 2$ in eq ⁿ .	Put $x = 4$ in eq ⁿ .	
		$y_c = (1/EI)[(-20 \times 2^3)/3 + 0 + 133.33 \times 2]$ = 213.33 / EI	$y_c = (1/EI)[(-10 \times 4^3)/3 + 0 + 106.67 \times 4]$ = 213.33 / EI	01 Mark
0.2		State how D. M. is find out for a fixed hear u	sing super position theorem. Evaluin it with	
Q.3	()	sketch.	sing super position theorem. Explain it with	
	Ans	After calculating fixed end moments and fixed end moment diagram and superimpose over it as shown in fig below.	simply supported bending moments, draw simply supported bending moment diagram	
		MA MA y1	B.M.DIA. M2 F.E.M.DIA. y2 MB	02 Marks
		Let net bending moment at 1 and 2 are m ₁ ar	nd m ₂ respectively.	
		Calculate y_1 and y_2 by interpolation.		02 Marks
		Then $m_1 = M_1 - y_1$ and $m_2 = M_2 - y_2$		
Q.3	d)	Using first principle find fixed end moment for	or a fixed beam carrying point load at mid	
	Ans	span.		
		A L/2 WL/4 (1) S.S.B.M.DIA MA F.E.M.DIA	HB = MA	01 Mark
		Due to symmetry, $M_A = M_B$ Area of S. S. B. M. Dia. = $a_1 = 0.5 \times L \times T$	$WL/4 = WL^2 / 8$	01 Mark
		Area of F. E. M. Dia. = $M_A x L$		
		Area of simply supported bending mo diagram a ₁ = a ₂	ment diagram = Area of fixed end moment	01 Mark
		$WL^2 / 8 = M_A x L$		
ļ		Hence $M_A = WL / 8$ And $M_B = WL / 8$	18	01 Mark
Q.3	e) Ans	Explain imperfect and perfect frame in detail Perfect frame : It is the simple frame in which (m) satisfies the equation $m = 2j - 3$. Such fra analysed by using basic equations of equilibr	number of joints (j) and number of members mes are internally determinate i.e. can be ium (ΣM _A = 0, ΣF _x = 0 and ΣF _y = 0).	02 Marks

		Imperfect frame: It is the simple frame	me in wł	nich number of jo	pints (j) and number of	
		members (m) does not satisfy the equation m = 2j – 3. Such frames are internally 0				02 Marks
		indeterminate/redundant or deficient.				
		If m > 2j – 3; then frame is called as indeterminate/redundant frame and cannot be				
		analysed by using basic equations of	equilibr	ium (ΣM _A = 0, ΣF	$F_x = 0$ and $\Sigma F_y = 0$).	
		If m < 2j – 3; then frame is called	as defic	ient frame and i	t is unstable frame.	
Q.3	f)	Determine the forces along with nat	ure in th	e members AB,	AE, EB and EF for frame	
		subjected to a load as shown is Fig. u	using me	thod of joints.		
		6 kN	6	3 kN 2 kN		
		G 2M F	2M	E 2M		
		D		0.5M A		
	Ans	Consider joint A.				
					2 kN	
		Θ = tan ⁻¹ (0.5/2)			, ⊥	
		$= 14.04^{\circ}$			A A	
				11.0	T	
				FAB		
						02 Marks
		Assuming F_{AE} and F_{AB} both tensile.				
		$\Sigma F_y = 0; 2 + F_{AB} Sin 14.04 = 0$. (.			
		$F_{AB} = -2/Sin14.04 = -8.24$ i.e 8.24 kN (Compressive)				
		$\Sigma F_{x} = 0; -F_{AE} - F_{AB} \cos 14.04 = 0$				
		$-F_{AE} - (-8.24)\cos(14.04) = 0$				
		$F_{AE} = 8.0 \text{ kN} (Tensile)$				
		Consider joint E				
			6 k	N		
		FEF	▼ E	E FAE = 8	BkN	
		-				
			T T			
				5		02 Marks
			FED			
		Assuming F _{EF} and F _{EB} both tensile.				
		$\Sigma F_x = 0; -F_{EF} + 8.0 = 0$				
		F _{EF} = 8.0 kN (Tensile)				
		$\Sigma F_y = 0; -6.0 - F_{EB} = 0$				
		F _{EB} = - 6.0 i.e 6.0 kN (Com	pressive	2)		
			-			
		Member Fo	orce	Nature		
		AB 8.2	4 kN	Compressive		
		AE 8.0	0 kN	Tensile		
		EB 6.0	0 kN	Compressive		
		EF 8.0	0 kN	Tensile		

0.4	2)	State Clanguron's theorem and also write the Clanguron's three moment theorem for				
Q.4	a)	State Clapeyron's theorem and also write the Clapeyron's three moment theorem for				
	_	beam with different moment of inertial giving meaning of each term.				
	Ans.	Clapeyrons theorem: For two span continuous beam having uniform moment of inertia				
		supported at A, B, and C and subjected to any external loading, the support moments M_A ,				
		M_B and M_C at the supports A, B and C respectively are given by the relation,	02 Marks			
		$M_A \times L_1 + 2M_B(L_1 + L_2) + M_C \times L_2 = -[(6 \times a_1 \times x_1/L_1) + (6 \times a_2 \times x_2/L_2)]$				
		MA L1 MB L2 MC				
		MD				
		x1 x2				
		If moment of inertia is not constant then Clapeyrons theorem can be stated in form of following equation.				
		$M_{A} \ge (L_{1}/I_{1}) + 2M_{B}[(L_{1}/I_{1}) + (L_{2}/I_{2})] + M_{C} \ge (L_{2}/I_{2}) = -[(6 \ge a_{1} \ge x_{1}/L_{1}I_{1}) + (6 \ge a_{2} \ge x_{2}/L_{2}I_{2})]$	01 Mark			
		Where,				
		$L_1 \& L_2$ are length of span AB & BC resp.				
		1 & 12 are Moment of inertia of span AB & BC resp.				
		$a_1 \& a_2$ are area of simply supported BMD of span AB & BC resp.	01 Mark			
		r + 8 $r = are distances of centroid of simply supported BMD from A & C resp$				
0.4	b)	Explain the concept of imaginary zero span in case of Claneyron's theorem				
Q.4	N) Ans	When the ends of continuous beam are fixed, then an imaginary shan is considered to				
	AIIS	the left or right of the fixed support as the case may be and Clapovrons theorem is applied				
		the left of right of the fixed support as the case may be and clapeyrons theorem is applied	02 Marks			
		It left and is fixed then consider imaginary span left of this support and if right and is				
		fired then experiden imaginary open on right side of thet support and it right end is				
		Clangurang theorem is applied as below.				
		Clapeyrons theorem is applied as below.				
			01 Mark			
		LO LI B LZ				
		A ₀ -A is imaginary span left to fixed end A.				
		For span A_0 -A and AB				
		$M_{A0} \times L_0 + 2M_A(L_0 + L_1) + M_B \times L_1 = -[(6 \times a_0 \times x_0/L_0) + (6 \times a_1 \times x_1/L_1)]$	01 Mark			
		$(-2M/L) + M/L = [0 + (6 \times 2 \times 2^{-1}/L)]$				
		$0 + 2 \ln_A(L_1) + \ln_B \times L_1 = - [0 + (0 \times a_1 \times L_1/L_1)]$				
		Where M_{A0} , L_0 and x_0 are terms related to imaginary span.				
Q.4	c)	A beam ABC is supported at A, B and C span AB and BC are of lengths 3 m and 4 m				
		respectively. AB carries a u.d.L. of 15 kN/m over entire span and BC carries central point				
		load of 30 kN. Calculate support moment at B using three moment theorem.				
			01 Mark			

	Ans	30 kN							
		15 kN/m							
		30.0							
		16.875							
		$M_{1} = 15 \times 3^{2}/8 = 16.875 \text{ kN-m} \qquad a_{1} = 2 \times 3 \times 16.875 / 3 = 33.75 \qquad x_{1} = 3/2 = 1.5 \text{ m}$							
		$IVI_2 = 30 \times 4/4$	= 30.0 KN-m	$a_2 = 0.5 \times 4 \times 30 = 0$	50.0 X ₂	$_{2} = 4/2 = 2$ m	01 Mark		
		$M_{\Lambda} \times I_1 + 2M_{B}$	$(_1 + _2) + M_c \times _2 = -$	·[(6 x a1 X x1/1) + 6 x	(a, X x,/l,)]				
			$M_A = M_C = 0$ (E	ind simple supports)					
		$2M_B(3 + 4) = -$	- [(6 X 33.75 X 1.5/3	3) + 6 X 60.0 X 2.0/4)]				
		$14.0M_{B} = -10$	1.25 – 180						
0.1	1)	$M_{\rm B} = -281.25$	/14 = -20.09 i.e.	20.09 kN-m Hogging					
Q.4	d)	Define stiffness of beam and state stiffness factor for beam with far end fixed and simply							
	Δns	supported end. Stiffness of heam: The moment required to produce unit rotation at the near and is called							
	7 (115	as stiffness of beam.							
		Stiffness factor for beam with far end fixed = 4EI/L							
		Stiffness factor for beam with far end simply supported = 3EI/L							
		EI = Flexural rigidity of beam.							
0.1	-)	L = Length of beam.							
Q.4	e)	Determine distribution factors at continuity for a continuous beam ABCD which is fixed at							
		and supporte	d at B. C and D. Tak	e AB =4 m. BC =3 m	and CD = 5 m if	M.I. for the spans is			
	Ans	$I_{AB} = 2I$, $I_{BC} = I$, $I_{CD} = 3I$.							
		B C D							
		4m 3m 5m							
		Joint	Member	Stiffness (k)	Σk	D.F. = k/Σk			
		п	BA	4 x 2EI/4 = 2EI	251	2EI/3EI = 0.67			
		В	BC	3 x EI/3 =EI	351	EI/3EI = 0.33	01 Mark		
		C	СВ	3 x EI/3 =EI	2.8FI	EI/2.8EI = 0.36	for each		
		Č	CD	3 x 3EI/5 =1.8EI	2.01	1.8EI/2.8EI = 0.64			

Q.4	f)	Calculate support moments by moment distribution method for given continuous as								
		shown								
		in fig.	6 kN							
			Ļ	51	kN/m					
		A	φ	(21)						
	A a		3m	B	4m	C				
	Ans	$M = 6 \times 2/2$	P = 2.2 E k N m	- N4 - 6	5 v 2 /0 -	- 2 2E LA	m			
		$M_{AB} = -5 \times 4^2$	5 – – 2.25 KN-III /12 – – 6 67 kN-r	$M_{BA} = 0$	5 v / ² /1 [·]	2.25 KN	kN-m			
			Member	Stiffness	<u>5 (k)</u> s (k)	<u>2 = 0.07</u> Σ	k k	DE = k/2	Σk	
		50111	BA	3 x FI/3	= FI		N I	EI/2 5EI =	0.4	01 Mark
		В	BC	3 x 2FI/4 =	=1.5FI	2.5	EI -	1.5FI/2.5FI	= 0.6	•=
		<u> </u>		0 ///				,	0.0	
		Joint		А			В		С	
		Members		AB		BA	BC		СВ	
		Dist ⁿ . factor		1.0		0.4	0.6		1.0	
		F.E.M.		- 2.25		2.25	- 6.67		6.67	02 Marks
		Balancing		2.25		1.768	2.652		- 6.67	
		Carry over				1.125	- 3.33			
		Balancing				0.882	1.323			
		Final momen	ts	0.0		6.025	- 6.025	5	0.0	
										01 Mark
		Support mom	ent at $B = MB = 0$	5.025 kN-m (H	ogging)					
Q.5	a)	A circular chimney has external diameter 60% more than internal diameter. The height of								
		chimney is 32 m and is subjected to a horizontal wind pressure of 1.75 kN/m ² . Find out the								
		stress distribution diagram. Unit wt. of chimney material is 18 kN/m ³ and C = 0.6								
	Ans	Data: External diameter (D) = $1.6 \times internal diameter (d)$								
		Height of chimney (h) = 32 m								
		Horizontal wind pressure (p) = 1.75 kN/m^2								
		Unit weight of material (σ) = 18 kN/m ³ C = 0.6								
		$\delta_{d} = \sigma h = 18 \times 32 = 576 \text{ kN/m}^2$						01 Mark		
		Horizontal wind force (P) = $p \times h \times D \times C$								
		$= 1.75 \times 32 \times 1.6d \times 0.6$								
		= 53.76d 0							01 Mark	
		Moment about base (M) = $P \times h/2$								
			= 53.	76d x 32/2						01 Mark
		= 860.16d								
		$I = (\pi / 64)(D^4)$	- d ⁴)				\frown			
		$= (\pi / 64)[(1.$	6d) ⁴ – d ⁴]					.35m		01 Mark
		$= 0.273d^4$						3 5		for stress
		$y_{max} = 0.8d$						· ·		dia.
		$O_b = IVI \times Y_{max}/I$	$M \propto y_{max}/I$							
		= 2520 6 /	$= 800.100 \times 0.80 / 0.2/30$							
		For no tension	l:					1152 kN/m2		01 Mark
			'/					1152 KIN/MZ		

		$\delta_d = \delta_b$							01 Mark
		$576 = 2520.6 / d^2$							
		$d^2 = 4.38$							
		d = 2.092 m							
		$D = 1.6 \times 2.092 = 3.35 \text{ m}$							01 Mark
		$f_{max} = 2 f_{d} = 2 \times 576 = 1152 \text{ kN/m}^2$							
Q.5	b)	A beam ABCD is supported at A, B and C span CD is having overhang AB = 6 m BC = 4 m							
	•	and CD = 1.5 m span AB carries UDL of 15 kN/m over entire span and BC carries point load							
		of 30 kN at 1 m from support B and a point load of 15 kN acts at free end at D. Determine							
		support mom	ents using mome	ent distributio	n method a	nd draw BM	D.		
	Ans				30 kN	1	5 kN		
			_15 kN/m	В		С	•		
		A - 6m 4m - 15m - D							
			2		2				
		$M_{AB} = -15 \times 6^2/12 = -45.0 \text{ kN-m}$ $M_{BA} = 15 \times 6^2/12 = 45.0 \text{ kN-m}$							
		$M_{BC} = -30 \times 1$	$1 \times 3^2/4^2 = -16.8^2$	75 kN-m	$M_{BC} = 30 x$	$1^2 \times 3/4^2 = 5$.625 kN-m		
		MCD = - 15 x	MCD = - 15 x 1.5 = - 22.5 kN-m						
		Joint	Member	Stiffnes	is (k)	Σk	D.F. =	k/Σk	
		В	BA	3 x EI/6 =	= 0.5EI	1 25EI	0.5EI/1.25	5EI = 0.4	02 Marks
		D	BC	3 x EI/4 =	0.75EI	1.2311	0.75EI/1.2	5EI = 0.6	
				1					
		Joint		А		В		С	
		Members		AB	BA	В	CB	CD	
		Dist". factor		1.0	0.4	0.6	1.0	0.0	
		F.E.M.		- 45.0	45.0	- 16.875	5.625	- 22.5	UZ WIARKS
		Balancing		45.30	-11.25	- 16.875	16.875	0.0	
		Carry over			22.5	8.44			
		Balancing			-12.38	-18.56			
		Final moments 0.0 43.87 -43.87 22.5 -22.5							
		67.5 43.87 22.5 B. M. D.							
									02 Marks

			Member	Force	Nature					
			BC	26.67 kN	Tensile					
			BE	0			02 Marks			
			EF	23.33 kN	Compressive					
			EC	18.85 kN	Compressive					
Q.6	a)	A simply suppor	ted beam of 6	m span carrie	es an u.d.l. of 20 l	<n a<="" and="" beam="" entire="" m="" over="" td=""><td></td></n>				
		point load of 60	kN at 2 m fron	n right hand s	upport using Ma	caulay's method, locate the				
	Anc	point of maximu	im deflection a	ind find its va	lue in terms of El	•				
	AIIS			X						
			2	0 kN/m	D kN B					
			A		в					
				4m	2m RB = 100	kN				
				X	x					
		Reactions:								
		$\Sigma M_{A} = 0$								
		$B_0 = (240 + 360)$	$3 - K_B x \delta = 0$				01 Mark			
		$n_{\rm B} = (240 + 500)$ = 100 kN.	/0				OT Mark			
		$R_A = 20 \times 6 + 60$	– 100 = 80 kN.							
		T	aking section X	-X at distance	e ' <i>x</i> ' from B.					
		N	$M_x = 100 \times x - 60(x - 2) - 20 \times x^2/2$							
		E	$\mathrm{Id}^2 \mathrm{y}/\mathrm{dx}^2 = -\mathrm{M}_2$	(
			$= -100 \times x + 60(x - 2) + 20 \times x^2/2$							
		Ir	Integrating							
		E	Eldy/dx = (-100 x x^2 /2) + [60(x - 2) ² /2] + 10 x x^3 /3 + C ₁ 1							
		Ir	ntegrating							
		E	$ly = (-50 \times x^3)$	'3) + [30(<i>x</i> – 2	2) ³ /3] + 10 x x^4 /1	$2 + C_1 x + C_2 - 2$	01 Mark			
		A	t x = 0; y = 0	in eq ⁿ . 2						
		0	$= 0 + C_2$							
		C	₂ = 0	· n e						
		A	t x = 6; y = 0	$rac{1}{2}$ in eq ² . 2	(2), (2) , (4) ,					
		0	$= (-50 \times 6^{-}/3)$	+ [30(6 – 2)*,	/3] + 10 x 6 /12 +	$-C_1 b + C_2$				
		С	$_1 = 313.35$	33 and $C_2 = 0$)		01 Mark			
		S	lope equation:		, ,					
		d	y/dx = 1/EI(– 5	0 x x²) + [30($x - 2)^{2} + 10 \times x^{2}$	³ /3 + 313.33 I				
		D	eflection equa	tion:	<i>,</i> -					
		y	= 1/El(– 50 x <i>x</i>	³ /3) + [10(<i>x</i> -	$(-2)^3$] + 10 x $x^4/1$	2 + 313.33 <i>x</i> II	01 Mark			
		Deflection is ma	ximum where	slope change	s the sign i.e. slop	pe = 0				
		Maximum deflee	ction will be in	between A a	nd C					
		Hence, 6 > <i>x</i> > 2								
		Equating Equ ⁿ I v	with zero.	2 -						
		$0 = 1/EI(-50 \times x)$	²) + [30(x – 2)	²] + 10 x x ³ /3	+ 313.33					
		$= -50 \text{ x} x^2 + 3$	$0x^2 - 120x + 2$	120 + 10 x x^3	/3 + 313.33					

		$0 = -20 \times x^2 - 120x + 3.33 x^3 + 433.33$	01 Mark					
		Solving this equation by trial and error method						
		x = 2.89 m						
		Hence deflection is maximum at distance 2,89 m from B						
		For v_{max} , put $x = 2.89$ in equ ⁿ II						
		$y = 1/E[(-50 \times 2.89^3/3) + [10(2.89 - 2)^3] + 10 \times 2.89^4/12 + 313.33 \times 2.89^{10}$						
		= 568.4 / El	01 Mark					
Q.6	b)	A fixed beam of span 8 m carries 5 kN/m udl over entire length along with a point load of						
		40 km at 211 from left hand support. This het biv at point load and draw bivid and 5 d.						
	Ans	40 kN A C						
		MAB RA						
		$M_{AB} = (40 \times 2 \times 6^2 / 8^2) + (5 \times 8^2 / 12)$	01 Mark					
		= 71.67 kN-m						
		$M_{BA} = (40 \times 2^2 \times 6 / 8^2) + (5 \times 8^2 / 12)$	01 Mark					
		= 41.67 KN-M						
		$\Sigma M_{\star} = 0$						
		$40 \times 2 + 5 \times 8 \times 4 + 41.67 - 71.67 - R_{\rm B} \times 8 = 0$						
		$R_{B} = (80 + 160 - 30) / 8$						
		= 26.25 kN.	01 Mark					
		R _A = 5 x 8 + 40 – 26.25 = 53.75 kN.						
		Bending moment at point load						
		$M_{\rm C} = -71.67 + 53.75 \times 2 - 5 \times 2 \times 1$	04.04					
		= 25.83 kN-m	01 Mark					
		A + B = -26.25 kN						
		At C. just right = $-26.25 + 5 \times 6 = 3.75 \text{ kN}$	02 Mark					
		At C, just left = $-26.25 + 5 \times 6 + 40 = 43.75 \text{ kN}$						
		At D = 53.75 kN						
		53.75 kN 43.75 kN						
		3.75 kN	01 Mark					
			OINUIR					
		S. F. D. 26.25 kN						
		71.67 kN-m 25.83 kN-m						
		41.67 kN-m						
			01 mark					
0.6	c)	B. M. D.						
Q.0	C)	A beam Abcd is supported at A, b and C, CD being overhang AB = 4 m, BC = 5 m and C CD = 1m AB and BC carries a central point of 15kN and 12kN respectively and a point load						
		Of 6 kN at D. Calculate support moments using three moment theorem and draw SFD and						
		BMD giving net BM.						

