MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Winter 2017

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Que. } \\ & \text { No. } \end{aligned}$	Sub. Que.	Model Answers				Total Marks
Q. 1	a) Ans.	Attempt any TEN of the following: Differentiate "Solid and Fluid". (any four)			2	(20)
		Sr. No.	Solid	Fluid		
		1.	Molecules are very closely spaced.	The space between molecules is large.		
		2.	Intermolecular cohesive force is large.	Intermolecular cohesive force is less.		2
		3.	Solid can resist tensile compressive force.	Liquid can not resist tensile force		
		4.	e.g.Metal Timber, concrete	e.g. Water, petrol, kerosene.		
	(b)	Define sp pure wate	ecific weight and give the	value of specific weight for		
	Ans.	Specific standard te	weight: It is defined as the mperature and pressure.	weight per unit volume at	1	2
		Specific w	eight for pure water $=9.81$	$\mathrm{kN} / \mathrm{m}^{3}$ or $9810 \mathrm{~N} / \mathrm{m}^{3}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	c)	Express 7.8 m of water in $\mathrm{N} / \mathrm{m}^{2}$ and head of mercury.		
	Ans.	Given:		
		$\mathrm{h}=7.8 \mathrm{~m}$ of water		
		Find: $\mathrm{P}, \mathrm{h}_{\mathrm{m}}$		
		$\mathrm{P}=\mathrm{S}_{\mathrm{w}} \gamma_{\mathrm{w}} \mathrm{h}_{\mathrm{w}}$		
		$\mathrm{P}=1 \times 9.81 \times 7.8$		
		$\mathrm{P}=76.52 \mathrm{kN} / \mathrm{m}^{2}$		
		In terms of head of mercury, $\mathrm{P}=\mathrm{S}_{\mathrm{m}} \gamma_{\mathrm{w}} \mathrm{~h}_{\mathrm{m}}$		2
		$\begin{gathered} 76.52=13.6 \times 9.81 \times \mathrm{h}_{\mathrm{m}} \\ \mathrm{~h}_{\mathrm{m}}=0.57 \mathrm{~m} \end{gathered}$	1	
	d)	State Darcy Weisbach equation for frictional loss in pipe.		
	Ans.	Darcy Weisbach equation for frictional loss in pipe is $h_{f}=\frac{f l v^{2}}{2 g d}$	1	
		Where, $\begin{aligned} & \mathrm{h}_{f}=\text { Loss of head due to friction }(\mathrm{m}) \\ & \mathrm{f}=\text { Friction factor } \\ & l=\text { Length of pipe }(\mathrm{m}) \\ & v=\text { Mean velocity of flow }(\mathrm{m} / \mathrm{sec}) \\ & \mathrm{d}=\text { Diameter of pipe }(\mathrm{m}) \end{aligned}$	1	2
	e)	Write any two applications of hydraulics in Irrigation Engineering.		
	Ans.	Applications of hydraulics with respect to Irrigation are as follows- 1. To measure velocity, pressure and discharge on flowing fluid. 2. To distribution of water for agriculture purpose. 3. To determine velocity of flow at a point in open channel. 4. To calculate total pressure and Centre of pressure acting on dam. 5. To design channel section, spillway etc.	1 mark each (any Two)	2
	f)	Define "Froude's number".		
	Ans.	Froude's number is a dimensionless number and is the ratio between inertia force to gravity force.	2	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	i)	State the meaning of priming and its purpose.		
	Ans.	Priming:-The operation of filling the casing, impeller and suction pipe of delivery pump up to delivery valve is called priming. Purpose:-To remove the air from suction pipe and the pump.	1	2
	j)	Define discharge and state its unit.		
	Ans.	Discharge: - It is defined as the quantity of fluid flowing through a section per unit time. Unit :- lit/sec, m ${ }^{3} / \mathrm{s}$	1 1	2
	k)	Define the term surface tension.		
	Ans.	The tension of the surface film of a liquid caused by the attraction of the particles (cohesion) in the surface layer by the bulk of the liquid, which tends to minimize surface area.	2	2
	I)	Define HGL and TEL.		
	Ans.	Hydraulic Gradient Line (HGL): If a line is drawn joining the piezometer levels at various points, the line so obtained is called 'hydraulic gradient line'.	1	
		Total Energy Line (TEL): If at different sections of the pipe, the total energy in terms of head is plotted to scale as vertical ordinate above the assumed datum and all these points are joined then a sloping straight line will be obtained, which is known as total energy line or total gradient line.	1	2
	m)	State two limitations of piezometer.		
	Ans.	1. Piezometer is not suitable for measuring high pressure. 2. Piezometer is not suitable for measuring vacuum pressure.	2	2

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	(f) Ans.	A concrete dam 12 m deep and 2 m wide containing water to a depth of 10 m . Find total hydrostatic pressure per meter run and centre of pressure on upstream face. Given: $\begin{aligned} & \mathrm{H}=12 \mathrm{~m} \\ & \mathrm{~h}=10 \mathrm{~m} \\ & \mathrm{~b}=2 \mathrm{~m} \end{aligned}$ Find: P and h Hydrostatic pressure (P) $\begin{aligned} & \mathrm{P}=\frac{1}{2} \times \gamma_{W} \times h^{2} \\ & \mathrm{P}=\frac{1}{2} \times 9.810 \times 10^{2} \\ & \mathrm{P}=490.5 \mathrm{kN} \text { per meter } \\ & \mathrm{P}=490.5 \mathrm{kN} \text { per meter length of dam } \end{aligned}$ Center of pressure ($\overline{\mathrm{h}}$) $\overline{\mathrm{h}}=\frac{h}{3} \quad \text { from base }$ $\overline{\mathrm{h}}=\frac{10}{3}=3.33 \mathrm{~m}$ $\overline{\mathrm{h}}=3.33 \mathrm{~m}$ from the base of dam	1 1 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(b) (c) Ans.	By continuity Eqution, $\begin{aligned} & Q=A_{1} V_{1}=A_{2} V_{2} \\ & V_{2}=\frac{A_{1}}{A_{2}} \cdot V_{1}=\frac{0.0176}{0.0496} V_{1} \\ & \therefore V_{2}=0.359 V_{1} \end{aligned}$ By applying Bernoulis eq ${ }^{\text {n }}$ $\frac{P_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+Z_{2}$ But, $P_{1}=P_{2}$ as given, $\begin{aligned} & \therefore \frac{V_{1}^{2}}{2 g}+0=\frac{V_{2}^{2}}{2 g} \\ & \frac{V_{1}^{2}}{2 \times 9.81}=\frac{\left(0.359 V_{1}\right)^{2}}{2 \times 9.81}+5 \\ & (1-0.1288) \frac{V_{1}^{2}}{2 g}=5 \\ & V_{1}=10.61 \mathrm{~m} / \mathrm{sec} \\ & \mathrm{~V}_{2}=0.359 \mathrm{~V}_{1} \\ & \mathrm{~V}_{2}=0.359 \times 10.61 \\ & \mathrm{~V}_{2}=3.80 \mathrm{~m} / \mathrm{sec} \\ & \therefore Q=A_{1} V_{1}=0.0176 \times 10.61 \\ & \therefore Q=0.186 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$ State any four minor losses with their formulas. 1. Loss of head at the entrance. $\mathrm{H}_{\mathrm{L}}=\frac{0.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ Where, $\mathrm{H}_{\mathrm{L}}=$ Head loss $\mathrm{V}=$ Velocity 2. Loss of head due to sudden expansion. $\mathrm{H}_{\mathrm{L}}=\frac{\left(\mathrm{V}_{1}-V_{2}\right)^{2}}{2 \mathrm{~g}}$	1 1 1 1 mark each (any four)	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(c) d) Ans.	3. Loss of head due to sudden contraction. $\mathrm{H}_{\mathrm{L}}=\frac{0.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ 4. Loss of head due to bend. $\mathrm{H}_{\mathrm{L}}=\mathrm{K} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$ 5. Loss of head due to exit. $\mathrm{H}_{\mathrm{L}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}$ 6. Loss of head due to obstruction. $\mathrm{H}_{\mathrm{L}}=\left[\frac{\mathrm{A}}{\mathrm{C}_{\mathrm{c}} \times \mathrm{a}}-1\right]^{2} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$ $\mathrm{A}=\mathrm{c} / \mathrm{s}$ Area of pipe $\mathrm{a}=\mathrm{c} / \mathrm{s}$ Area of Opening $\mathrm{C}_{\mathrm{C}}=$ Coefficient contraction 7. Loss of head due to pipe fitting. $\mathrm{H}_{\mathrm{L}}=\mathrm{K} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$ A liquid of specific gravity 0.9 is flowing through horizontal pipe of 100 mm diameter at the rate $25 \mathrm{lit} / \mathrm{s}$. Find the total head at a point where pressure is 100 kPa . Consider datum height as a 2 m . Given: $\begin{aligned} & \mathrm{S}=0.9 \\ & \mathrm{~d}=100 \mathrm{~mm}=0.1 \mathrm{~m} \\ & \mathrm{P}=100 \mathrm{kPa} \\ & \mathrm{Z}=2 \mathrm{~m} \\ & \mathrm{Q}=25 \mathrm{lit} / \mathrm{sec}=25 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$ Find: H $\begin{aligned} & \mathrm{A}=\frac{\pi}{4} \times(\mathrm{d})^{2}=\frac{\pi}{4} \times(0.1)^{2}=7.853 \times 10^{-3} \mathrm{~m}^{2} \\ & \mathrm{~V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{25 \times 10^{-3}}{7.853 \times 10^{-3}} \\ & \mathrm{~V}=3.183 \mathrm{~m} / \mathrm{sec} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(d)	$\begin{aligned} H & =\frac{P}{\gamma}+\frac{\mathrm{V}^{2}}{2 g}+Z \\ & =\frac{100}{9.81}+\frac{(3.183)^{2}}{2 \times 9.81}+2 \\ & =10.193+0.516+2 \\ & =12.71 \mathrm{~m} \\ H & =12.71 \mathrm{~m} \end{aligned}$	1	4
	(e) Ans.	Define hydraulic jump and state its two applications. Hydraulic Jump: - It is the phenomenon occurring in an open channel when rapidly flowing stream abruptly change to slowly flowing stream causing a distance rise or jump in level of liquid surface.	2	
		Applications of hydraulic jump This phenomenon is used in hydraulic structures constructed for irrigation, water supply works such as 1) Energy dissipation below the spillway of dam. 2) Mixing of chemicals in water treatment plants. 3) Retaining head in canal if head drops due to losses in long canals.	$\begin{gathered} 1 \\ \text { mark } \\ \text { each } \\ \text { (any } \\ \text { two) } \end{gathered}$	4
	(f)	Explain: (i) Atmospheric pressure (ii) Absolute pressure (iii) Gauge pressure (iv) Vacuum pressure		
	Ans.	(i) Atmospheric pressure : The Atmospheric air exerts a normal pressure upon all the surfaces with which it comes in contact is called as atmospheric pressure. The atmospheric pressure varies with the altitude. It can be measured by means of a barometer.	1	
		(ii) Absolute pressure : The pressure, which is measured with references to absolute vacuum pressure or zero pressure is called as absolute pressure.	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(f)	iii) Gauge pressure : The pressure, which is measured above the atmospheric pressure is called as gauge pressure. It is measured with the help of pressure measuring instrument. iv) Vacuum pressure : The pressure which is measured below the atmospheric pressure is called as vacuum pressure or negative pressure. It is measured with the help of pressure measuring instruments.	11	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(b)	$\begin{aligned} & h_{L_{1}}=h_{L_{2}}=H \\ & {\left[\frac{4 f L_{1} \mathrm{~V}_{1}^{2}}{2 \mathrm{gd}_{1}}\right]=\left[\frac{4 f L_{2} \mathrm{~V}_{2}^{2}}{2 \mathrm{gd}_{2}}\right]=8.2} \\ & {\left[\frac{4 \times 0.027 \times 700 \times \mathrm{V}_{1}^{2}}{2 \times 9.81 \times 0.1}\right]=\left[\frac{4 \times 0.027 \times 700 \times \mathrm{V}_{2}^{2}}{2 \times 9.81 \times 0.2}\right]=8.2} \\ & 10 \mathrm{~V}_{1}^{2}=5 \mathrm{~V}_{2}^{2}=8.2 \\ & \mathrm{~V}_{1}^{2}=\frac{5}{10} \mathrm{~V}_{2}^{2}=8.2 \\ & 10 \mathrm{~V}_{1}^{2}=8.2 \\ & \mathrm{~V}_{1}^{2}=0.82 \\ & \mathrm{~V}_{1}=0.905 \mathrm{~m} / \mathrm{s} \\ & 5 \mathrm{~V}_{2}^{2}=8.2 \\ & \mathrm{~V}_{2}^{2}=1.64 \\ & \mathrm{~V}_{2}=1.280 \mathrm{~m} / \mathrm{s} \end{aligned}$ Total discharge, $\begin{aligned} \mathrm{Q}_{1} & =\mathrm{Q}_{1}+\mathrm{Q}_{2} \\ \mathrm{Q}_{1} & =\mathrm{A}_{1} \mathrm{~V}_{1} \\ & =\frac{\pi}{4} \times 0.1^{2} \times 0.905 \\ \mathrm{Q}_{1} & =7.10 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec} \\ \mathrm{Q}_{2} & =\mathrm{A}_{2} \mathrm{~V}_{2} \\ & =\frac{\pi}{4} \times 0.2^{2} \times 1.280 \\ \mathrm{Q}_{2} & =0.040 \mathrm{~m}^{3} / \mathrm{sec} \\ \mathrm{Q} & =7.10 \times 10^{-3}+0.040 \\ \mathrm{Q} & =0.0473 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$	1	4

| Que.
 No. | Sub.
 Que. | Model Answers | Marks | Total
 Marks |
| :---: | :---: | :--- | :--- | :--- | :--- |
| 4. | (c) | Explain the working principle of current meter with neat sketch.
 Principle:-
 It is small reaction turbine. When placed in flow of water it rotates
 with speed. The velocity can be calibrated by observing revolutions
 per minute towing with a carriage mounted on rails, across still water
 at known velocities.
 A current meter is a mechanical device which has revolving elements
 such as cups which revolve when the current meter is immersed in
 flowing water.
 It is used to measure the velocity of liquid in open channels.
 The current meter consist of hallow hemisphere or cones mounted on
 spokes so as to cause rotation about a shaft perpendicular to direction
 of flow.
 The magnitude of fluid velocity is determined by the calibration
 curve.
 The calibration curve for the current meter can be prepared by plotting
 the rotation at speed (rpm) versus the speed of towing carriage (m/s),
 which will use to find the velocity of flow of water in the channel. | 2 | |

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(d)	A venturimeter 30 cm diameter at entrance to 10 cm diameter at throat connected to pipe flowing water. The difference in mercury level of manometer is $6 \mathbf{c m}$. Calculate the discharge flowing through the pipe. Given: $\begin{aligned} & \mathrm{d}_{1}=30 \mathrm{~cm}=0.3 \mathrm{~m} \\ & \mathrm{~d}_{2}=10 \mathrm{~cm}=0.1 \mathrm{~m} \\ & x=6 \mathrm{~cm}=0.06 \mathrm{~m} \end{aligned}$ Find: Q Area of pipe, $\quad \mathrm{a}_{1}=\frac{\pi}{4} \mathrm{~d}_{1}^{2}=\frac{\pi}{4}(0.3)^{2}=0.0707 \mathrm{~m}^{2}$ Area of throat, $\mathrm{a}_{2}=\frac{\pi}{4} \mathrm{~d}_{2}{ }^{2}=\frac{\pi}{4}(0.1)^{2}=7.854 \times 10^{-3} \mathrm{~m}^{2}$ Differential pressure head, $\begin{aligned} & \mathrm{h}=x\left(\frac{\mathrm{Sm}}{\mathrm{~S}}-1\right) \\ & \mathrm{h}=0.06\left(\frac{13.6}{1}-1\right) \\ & \mathrm{h}=0.756 \mathrm{~m} \end{aligned}$ Discharge through venturimeter, $\begin{aligned} & \mathrm{Q}_{\mathrm{th}}=\frac{\mathrm{a}_{1} \mathrm{a}_{2} \sqrt{2 \mathrm{gh}}}{\sqrt{\mathrm{a}_{1}{ }^{2}-\mathrm{a}_{2}{ }^{2}}} \\ & \mathrm{Q}_{\mathrm{th}}=\frac{7.854 \times 10^{-3} \times 0.0707 \sqrt{2 \times 9.81 \times 0.756}}{\sqrt{(0.0707)^{2}-\left(7.854 \times 10^{-3}\right)^{2}}} \\ & \mathrm{Q}_{\mathrm{th}}=\frac{2.1377 \times 10^{-3}}{0.07026} \\ & \mathrm{Q}_{\mathrm{th}}=0.0304 \mathrm{~m}^{3} / \mathrm{sec} \\ & Q_{\text {act. }}=C_{d} \times \mathrm{Q}_{\mathrm{th}} \\ & Q_{\text {act. }}=C_{d} \times 0.0304 \\ & \mathrm{Q}=0.0304 C_{d} \mathrm{lit} / \mathrm{sec} \\ & \end{aligned}$ (Note: Value of C_{d} is not given in problem. If the students assumed an appropriate value of C_{d} and tried to attempt the question give appropriate marks.)	1 1 1 1 1 1	4

Que. No.	Sub. Que.	Model Answers			Marks	Total Marks
	(e) Ans.				 2 mark mach eany four)	
			frictional loss. Frictional Loss: - The loss of head due to friction between liquid			
		Factors 1. Natur 2. Pipe 3. Lengt 4. Head 5. Squar	ffecting friction loss: - of surface of pipe material. meter. of pipeline. ss. of the velocity of flow.			4
	(f)	Differentiate any four points between Notch and Weir.				
	Ans.	Sr. No.	Notch	Weir		
		1	It is the device used for measuring the rate of flow of liquid through a small channel or a tank.	It is used for measuring the rate of flow of water in rivers or streams.		
		2	Notches are made of metallic plates.	Weirs are made of concrete or masonry structure.	each	4
		3	Notches are of smaller sizes.	Weir is of bigger sizes.		
		4	e. g. Rectangular, Triangular, Trapezoidal, stepped notch.	e. g. According to shape, discharge, width of crest, nature of crest.		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5		Attempt any FOUR of the following:		(16)
	(a)	A 80 mm diameter orifice discharges water $100 \mathrm{lit} / \mathrm{sec}$ under a constant head of $\mathbf{6 m}$. The diameter of jet at vena-contracta is 7 cm . Calculate $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{v}}, \mathrm{C}_{\mathrm{c}}$.		
	Ans.	Given:		
		$\mathrm{Q}=100 \mathrm{lit} / \mathrm{sec}=100 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$		
		Head (H) $=6 \mathrm{~m}$		
		Diameter of orifice $80 \mathrm{~mm}\left(D_{o}\right)=0.08 \mathrm{~m}$		
		Diameter of vena contracta $7 \mathrm{~cm}\left(d_{a}\right)=0.07 \mathrm{~m}$		
		Find: $\mathrm{C}_{\mathrm{C}}, \mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{v}}$		
		$\mathrm{C}_{\mathrm{C}}=\frac{\text { Area of jet at vena contracta }}{\text { Area of orifice }}$		
		$=\frac{\frac{\pi}{4} \times 0.07^{2}}{\frac{\pi}{4} \times 0.08^{2}}$		
		$\mathrm{C}_{\mathrm{C}}=0.765$	1	
		$\mathrm{C}_{\mathrm{d}}=\frac{\mathrm{Q}_{\text {actual }}}{\mathrm{Q}_{\text {therotical }}}$		
		$=\frac{100 \times 10^{-3}}{\mathrm{a} \times \sqrt{2 \mathrm{gh}}}$	1	
		$=\frac{100 \times 10^{-3}}{}$		4
		$\overline{\frac{\pi}{4} \times 0.08^{2} \times \sqrt{2 \times 9.81 \times 6}}$		
		$=100 \times 10^{-3}$	1	
		$=\frac{54.53 \times 10^{-3}}{}$		
		$\mathrm{C}_{\mathrm{d}}=1.83$		
		$\mathrm{C}_{\mathrm{d}}=\mathrm{C}_{\mathrm{C}} \cdot \mathrm{C}_{\mathrm{v}}$		
		$1.83=0.765 \times \mathrm{C}_{\mathrm{v}}$		
		$\mathrm{C}_{\mathrm{v}}=2.39$	1	
		(Note: $-Q_{a c t .}>Q_{t h}$ there for C_{d} and C_{v} are greater than one which is not practically possible)		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(a)	Attempt any TWO of the following :		(16)
		A pipeline 50 m long is connected to a water tank at one end and discharges freely into atmosphere at the other end. For the first 30 m of its length from tank, the pipe line is 15 cm diameter and its diameter suddenly enlarged to 30 cm . The height of water level in the tank is 8 m above center of pipe. Considering all losses of head, determine rate of flow $f=0.16$.		
	Ans.	(Note: The given problem is solved by taking fis a friction factor.)		
		Given:		
		$\begin{aligned} & L=50 \mathrm{~m}, \mathrm{~L}_{1}=30 \mathrm{~m}, \mathrm{~d}_{1}=15 \mathrm{~cm}=0.15 \mathrm{~m}, \\ & L_{2}=(50-30)=20 \mathrm{~m}, \end{aligned}$		
		$d_{2}=30 \mathrm{~cm}=0.3 \mathrm{~m}, \mathrm{H}=8 \mathrm{~m}, \square$		
		$f=0.16$		
		Find $: \mathrm{h}_{\mathrm{L}}, \mathrm{Q}$		
		Using continuity eq ${ }^{\text {n }}$ $Q_{1}=Q_{2}$		
		$A_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$		
		$\frac{\pi}{4} d_{1}^{2} V_{1}=\frac{\pi}{4} d_{2}^{2} \mathrm{~V}_{2}$	1	
		$(0.15)^{2} V_{1}=(0.3)^{2} V_{2}$		
		$\mathrm{V}_{1}=4 \mathrm{~V}_{2}$		
		All lossess $=$ Loss at entrance $+\mathrm{h}_{\mathrm{f}_{1}}+$ Loss due to sudden enlargement $+\mathrm{h}_{\mathrm{f}_{1}}+$ Loss at exit Loss at entrance, $\mathrm{h}_{\mathrm{L}_{\text {crarace }}}=\frac{0.5 V_{1}^{2}}{2 g}$		
		$\mathrm{h}_{\mathrm{L}}=\frac{0.5 \times\left(4 \mathrm{~V}_{2}\right)^{2}}{}$	1	
		$\mathrm{L}_{\mathrm{L}_{\text {errame }}} \frac{2 \times 9.81}{} \mathrm{~h}_{\mathrm{L}}=0.4077 \mathrm{~V}_{2}{ }^{2}$		
		Major loss in pipe $\mathrm{h}_{\mathrm{f}_{1}}=\left[\frac{f_{1} L_{1} \mathrm{~V}_{1}^{2}}{2 \mathrm{gd}_{1}}\right]$		
		$\mathrm{h}_{\mathrm{f}_{1}}=\left[\frac{0.16 \times 30 \times\left(4 \mathrm{~V}_{2}\right)^{2}}{2 \times 081 \times 015}\right]$	1	
		$\mathrm{h}_{\mathrm{f}_{1}}=\left[\frac{2 \times 9.81 \times 0.15}{}\right]$		
		$\mathrm{h}_{\mathrm{f}_{1}}=26.0956 \mathrm{~V}_{2}^{2}$		
		Loss due to sudden enlargement, $\left(\mathrm{V}_{1}-V_{2}\right)^{2}$		
		$h_{L_{\text {Lembsegent }}}=\frac{\left(\mathrm{V}_{1}-V_{2}\right)^{2}}{2 g}$		
		$\mathrm{h}_{1} \quad=\frac{\left(4 \mathrm{~V}_{2}-V_{2}\right)^{2}}{2 g}$	1	
		$\mathrm{h}_{\mathrm{L}_{\text {cilimemam }}}=\frac{\left(\mathrm{N}_{2}-\mathrm{V}^{2}\right)^{2}}{2 g}$	1	
		$\mathrm{h}_{\mathrm{h}_{\text {columan }}}=0.458 V_{2}{ }^{2}$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	(a)	$\begin{aligned} & \text { Major loss in pipe } \\ & \mathrm{h}_{\mathrm{f}_{2}}=\left[\frac{f L_{2} \mathrm{~V}_{2}^{2}}{2 \mathrm{gd}_{2}}\right] \\ & \mathrm{h}_{\mathrm{f}_{2}}=\left[\frac{0.16 \times 20 \times \mathrm{V}_{2}^{2}}{2 \times 9.81 \times 0.30}\right] \\ & \mathrm{h}_{\mathrm{f}_{2}}=0.543 \mathrm{~V}_{2}^{2} \end{aligned}$ Loss at exit, $\begin{aligned} & \mathrm{h}_{\mathrm{L}_{\text {exit }}}=\frac{V_{2}^{2}}{2 g} \\ & \mathrm{~h}_{\mathrm{L}_{\text {exit }}}=0.051 V_{2}^{2} \end{aligned}$ Appling Bernouli's equetion, $\begin{aligned} & \frac{P_{1}}{\gamma_{\omega}}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\gamma_{\omega}}+\frac{V_{2}^{2}}{2 g}+Z_{2}+\text { All lossess } \\ & 0+0+8=0+0.051 V_{2}^{2}+0+0.4077 \mathrm{~V}_{2}^{2}+26.0956 \mathrm{~V}_{2}^{2}+0.458 V_{2}^{2}+0.543 \mathrm{~V}_{2}^{2}+0.051 V_{2}^{2} \\ & 8=27.606 V_{2}^{2} \\ & V_{2}^{2}=0.289 \\ & V_{2}=0.5376 \mathrm{~m} / \mathrm{sec} \\ & Q=A_{2} V_{2} \\ & Q=\frac{\pi}{4} \times\left(d_{2}\right)^{2} \times V_{2} \\ & Q=\frac{\pi}{4} \times(0.3)^{2} \times 0.5376 \\ & Q=0.038 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$	1 1 1	8

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	(b) Ans.	(i) A trapezoidal lined channel has $\mathbf{4} \mathbf{m}$ bed width, 0.8 depth of flow, side slope $1: 1$ and bed slope 1 in 3000 . Find the capacity of channel if $\mathbf{C}=\mathbf{6 0}$ in Chezy's formula. (ii) Write the condition of most economical section for rectangular and trapezoidal channel. (i) Given: $\begin{aligned} & b=4 m \\ & d=0.8 m \end{aligned}$ Side slope (n) 1:1 $\begin{aligned} & \mathrm{S}=\frac{1}{3000} \\ & C=60 \end{aligned}$ Find : Q $\begin{aligned} \mathrm{A} & =\mathrm{bd}+\mathrm{nd}^{2} \\ & =4 \times 0.8+1 \times 0.8^{2} \\ \mathrm{~A} & =3.84 \mathrm{~m}^{2} \end{aligned}$ $P=b+2 d \sqrt{1+n^{2}}$ $P=4+2 \times 0.8 \sqrt{1+1^{2}}$ $P=6.26 \mathrm{~m}$ $R=\frac{A}{P}$ $R=\frac{3.84}{6.26}$ $R=0.6134 m$ $Q=A C \sqrt{R S}$ $=3.84 \times 60 \times \sqrt{0.6134 \times 1 / 3000}$ $\mathrm{Q}=3.294 \mathrm{~m}^{3} / \mathrm{s}$ (ii) Most Economical Condition Rectangular channel: $\begin{aligned} & \mathrm{b}=2 \mathrm{~d} \\ & \mathrm{R}=\frac{\mathrm{d}}{2} \end{aligned}$	1 1 1 1 1 1	8

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline 6. \& (c) \& \begin{tabular}{l}
(ii) \\
Specific Energy: \\
Specific energy of a flowing liquid is defined as energy per unit weight with respect to the channel bottom. \\
Specific energy diagram \\
In specific energy diagram, the graph is plotted between depth (Y axis) and specific energy (X axis). The depth corresponding to minimum specific energy is called critical depth. Apart from this for every other specific energy there will be two depths Supercritical and Subcritical depth.
\end{tabular} \& 1

2

1 \&

\hline
\end{tabular}

