Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	a)	Attempt any SIX of the following:		(12)
	(i)	Define capillarity.		
	Ans.	It is defined as the phenomena of rise or fall of liquid surface in small tube relative to the adjacent general level of liquid when the tube is held vertically in the liquid.	2	2
	(ii) Ans.	If $5 \mathrm{~m}^{\mathbf{3}}$ certain oil weight 40 kN . Calculate specific weight, mass density.		
		$\begin{gathered} \mathrm{V}=5 \mathrm{~m}^{3} \mathrm{~W}=40 \mathrm{kN} \\ \gamma=? \\ \rho=? \end{gathered}$		
		Specific weight $\gamma_{L}=\frac{W}{V}=\frac{40}{5}$	1	
		$=8 \mathrm{kN} / \mathrm{m}^{3}=8000 \mathrm{~N} / \mathrm{m}^{3}$		2
		Mass density		
		$\gamma_{L}=\rho_{L} \times g$	1	
		$\rho_{L}=\frac{\gamma_{L}}{g}=\frac{8000}{9.81}=815.49 \mathrm{~N} / \mathrm{m}^{3}$		

$\begin{aligned} & \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
2.		$\begin{aligned} & p=\gamma_{l} A \bar{h} \\ & p=9810 \times 6 \times \frac{3}{2} \\ & p=88290 \mathrm{~N} \\ & P=88.29 \mathrm{kN} \\ & \bar{h}=\frac{I_{\sigma} \times \sin ^{2} \theta}{A \bar{Y}}+\bar{Y} \\ & I_{z x x}=\frac{2 \times 3^{3}}{12}=4.5 \mathrm{~m}^{3} \\ & \bar{h}=\frac{4.5 \times 1}{6 \times 1.5}+1.5 \\ & \bar{h}=2 \mathrm{~m} \end{aligned}$ WATER LEVEL CASE-II) Upper Edge is 2.5 m below free water surface $\begin{aligned} & p=\gamma_{1} A \bar{h} \\ & p=9810 \times 6 \times\left(2.5+\frac{3}{2}\right) \\ & p=235440 \mathrm{~N} \\ & \hline P=235.44 \mathrm{kN} \\ & \bar{Y}=2.5+3 / 2 \\ & \bar{Y}=4 \mathrm{~m} \\ & \bar{h}=\frac{4.5 \times 1}{6 \times 4}+4 \\ & \bar{h}=4.18 \mathrm{~m} \end{aligned}$	01 01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	b)	A Triangular plate having 1 m base and 1.8 m altitude is immersed in water. The plane of plate is inclined at 30° with free surface of water and base is parallel to and at depth of 2 m from water surface. Find pressure acting on the plate and its center of pressure. Case: -i) $\frac{\text { Apex upward }}{2}$ $\mathrm{A}=1 / 2 \times 1 \times 1.8=0.9 \mathrm{~m}$ $y=0.6+1.1=1.7 \mathrm{~m}$ $\bar{h}=\frac{b h^{3} / 36 \times \sin ^{2}(30)}{-\bar{y}}+\bar{y}$ $\overline{\mathrm{h}}=1.726 \mathrm{~m}$ $\begin{aligned} \mathrm{P} & =\gamma_{\mathrm{L}} A \bar{Y} \\ & =9810 \times 0.9 \times 1.7 \\ P & =15009.3 \mathrm{~N} \\ P & =15 \mathrm{kN} \end{aligned}$ OR Case:- ii Apex downward $\begin{aligned} & A=\frac{1}{2} \times b \times h=\frac{1}{2} \times 1 \times 1.8=0.9 \mathrm{~m}^{2} \\ & \bar{Y}=2+\left(\frac{1}{3} h\right) \times \sin 30^{0}=2+\left(\frac{1}{3} \times 1.8\right) \times \frac{1}{2}=2.3 \mathrm{~m} \end{aligned}$ To calculate total pressure (P) $\mathrm{P}=\gamma_{1} \times A \times \bar{Y}=9.81 \times 0.9 \times 2.3=20.31 \mathrm{k} \mathrm{~N}$ To calculate center of pressure (h) $\begin{aligned} & I_{G}=\frac{\mathrm{bh}^{3}}{36}=\frac{1 \times 1.8^{3}}{36}=0.162 \mathrm{~m}^{3} \\ & \overline{\mathrm{~h}}=\frac{I_{G} \sin ^{2} \theta}{A \bar{Y}}+\bar{Y}=\frac{0.162 \times \sin ^{2} 30}{0.9 \times 2.3}+2.3 \\ & \overline{\mathrm{~h}}=2.32 \mathrm{~m} \text { From free water surface } \end{aligned}$	01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	b)	Fig. Flow Net Uses of flow net - 1) To check the problems of flow under hydrostatic structure like dams etc. 2) To determine of seepage pressure. 3) To find exit gradient. 4) A flow net analysis assists in the design of an efficient boundary shapes. Water is flowing through tapering pipe who's Centre of upper end is 5 m above the datum and its diameter is 20 cm . The pressure at this upper end is $5 \mathrm{~kg} / \mathrm{cm}^{2}$. The lower end is situated 3 m above the datum with a diameter of 05 cm . Determine the pressure at lower end and if velocity at upper end is $1 \mathrm{~m} / \mathrm{s}$. At the upper end :- $\begin{aligned} & \mathrm{d}_{1}=20 \mathrm{~cm}=0.2 \mathrm{~m} \\ & \mathrm{a}_{1}=\pi\left(\mathrm{d}_{1}^{2)} / 4=\pi \times(0.2)^{2} / 4=0.3141 \mathrm{~m}^{2}\right. \\ & \mathrm{P}_{1}=5 \mathrm{~kg} / \mathrm{cm}^{2} \\ & \mathrm{P}_{1}=5 \times 9.81 \mathrm{~N} / \mathrm{cm}^{2}=49.05 \mathrm{~N} / \mathrm{cm}^{2} \\ & \mathrm{P}_{1}=49.05 / 0.01^{2} \\ & \quad=490.5 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{~V}_{1}=1 \mathrm{~m} / \mathrm{s} \end{aligned}$	02 (1 mark each)	04

$\begin{aligned} & \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
3.		Length of pipe $=50 \mathrm{~m} \quad$ velocity of flow $=3 \mathrm{~m} / \mathrm{s}$ $\mathrm{f}=0.00256$ i) Darcy equation :- If f is considered as friction factor. $\begin{aligned} & \mathrm{h}_{\mathrm{f}}=\frac{f \mathrm{LV}^{2}}{2 g d} \\ & \mathrm{~h}_{\mathrm{f}}=\frac{0.00256 \times 50 \times 3^{2}}{2 \times 9.81 \times 0.3} \\ & \mathrm{~h}_{\mathrm{f}}=0.1957 \mathrm{~m} \end{aligned}$ OR i) Darcy equation: - If f is considered as coefficient. $\begin{aligned} \mathrm{h}_{\mathrm{f}}= & \frac{4 f \mathrm{LV}^{2}}{2 g d} \\ & \mathrm{~h}_{\mathrm{f}}=\frac{4 \times 0.00256 \times 50 \times 3^{2}}{2 \times 9.81 \times 0.3} \\ & \mathrm{~h}_{\mathrm{f}}=0.7828 \mathrm{~m} \end{aligned}$ ii) Chezy's formula $\begin{aligned} & C=60, \mathrm{~m}=\frac{\mathrm{d}}{4}=\frac{0.30}{4}=0.075 \mathrm{~m} \\ & V=C \sqrt{m i} \\ & 3=60 \sqrt{0.075 \times i} \\ & \therefore \quad \mathrm{i}=0.0333 \\ & \mathrm{i}=\frac{\mathrm{h}_{\mathrm{f}}}{\mathrm{~L}} \\ & \therefore \quad \mathrm{~h}_{\mathrm{f}}=\mathrm{i} \times \mathrm{L} \\ &=0.0333 \times 50 \\ &=1.665 \mathrm{~m} \end{aligned}$	01 01 01 01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	d) Ans.	What is major and minor loss of head in flow through pipes? Write any two equations of minor loss. Major loss: The major loss of head is caused due to friction when fluid flow through a pipe. Minor loss: - The minor loss of head are caused due to change in velocity of flowing fluid either in magnitude or direction. $h_{e}=\left(V_{1}-V_{2}\right)^{2} / 2 g$ 2. Loss of head due to sudden contraction - $\mathrm{h}_{\mathrm{c}}=0.5 \mathrm{~V}_{2}^{2} / 2 \mathrm{~g}$ 3. Loss of head at the entrance - $h_{\text {entry }}=0.5 \mathrm{~V}^{2} / 2 \mathrm{~g}$ 4. Loss of head due to exit- $\mathrm{h}_{\text {exit }}=\mathrm{V}^{2} / 2 \mathrm{~g}$ 5. Loss of head due to bend $\mathrm{H}_{\mathrm{L}}=\mathrm{KV}_{2}{ }^{2} / 2 \mathrm{~g}$ 6. Loss of head due to gradual contraction and expansion $\mathrm{H}_{\mathrm{L}}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$ 7. Loss of head due to obstruction $\left.\mathrm{h}_{\mathrm{L}}=\left(\left(\mathrm{A} / \mathrm{c}_{\mathrm{c}}\right) \times \mathrm{a}\right)-1\right)^{2} \times\left(\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$ 8. Loss of head due to top pipe fitting $\mathrm{h}_{\mathrm{L}}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$	01 01 1 Mark each (any two)	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	d) Ans.	Uses of Hydraulic Jump: This phenomenon is used in hydraulic structures constructed for irrigation, water supply works such as: 1) Energy dissipation below the spillway of dam 2) Mixing of chemicals in water treatment plants 3) Retaining head in canal if head drops due to losses in long canals. What is Froude's experiment? Explain with a neat sketch. The Froude's Number is defined as the square root of ratio of inertia force of flowing fluid to the gravity force. Mathematically it is expressed as, $\begin{gathered} F_{r}=\sqrt{\frac{F_{i}}{F_{g}}} \\ \mathrm{~F}_{\mathrm{r}}=\frac{\mathrm{V}}{\sqrt{\mathrm{gD}}} \end{gathered}$ Where, $\mathrm{V}=$ Mean velocity of flow $\mathrm{g}=$ Acceleration due gravity $\mathrm{D}=$ Hydraulic mean depth of channel section When, a. Froude's Number $\left(\mathrm{F}_{\mathrm{r}}\right)=1$ The flow is critical. b. Froude's Number $\left(\mathrm{F}_{\mathrm{r}}\right)<1$ The flow is Sub-critical. c. Froude's Number $\left(\mathrm{F}_{\mathrm{r}}\right)>1$ The flow is Super-critical.	Mark each (any two) 01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	e) Ans. f) Ans.	Define hydraulic coefficients for orifice and State relationship among the hydraulic coefficients for an Orifice. 1. Coefficient of discharge $\left(\mathbf{C}_{d}\right)$. The ratio of the actual discharge to the theoretical discharge is called as the coefficient of discharge. 2. Coefficient of contraction $\left(\mathrm{C}_{\mathrm{c}}\right)$. The ratio of the cross-sectional area of the jet at vena contracta to the cross-sectional area of the orifice is called coefficient of contraction. 3. Coefficient of velocity $\left(\mathrm{C}_{\mathrm{v}}\right)$. The ratio of actual velocity of the jet at vena contracta to the theoretical velocity of the jet is called coefficient of velocity. Relation: - $\mathrm{Cd}=\mathrm{C}_{\mathrm{v}} \times \mathrm{C}_{\mathrm{c}}$ Explain with neat sketch the working of Venturimeter. Working: - The venturimeter is used to measure the rate of flow of a fluid flowing through the pipes. Let's understand how it does this measurement step by step. 1. Here we have considered two cross section, first at the inlet and the second one is at the throat. The difference in the pressure heads of these two sections is used to calculate the rate of flow through venturimeter.	01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	a)	1. As the water enters at the inlet section i.e. in the converging part it converges and reaches to the throat. 2. The throat has the uniform cross section area and least cross section area in the venturimeter. As the water enters in the throat its velocity gets increases and due to increase in the velocity the pressure drops to the minimum. 3. Now there is a pressure difference of the fluid at the two sections. At the section 1(i.e. at the inlet) the pressure of the fluid is maximum and the velocity is minimum. And at the section 2 (at the throat) the velocity of the fluid is maximum and the pressure is minimum. 4. The pressure difference at the two section can be seen in the manometer attached at both the section. 5. This pressure difference is used to calculate the rate flow of a fluid flowing through a pipe. Fig. Venturimeter Attempt any FOUR of the following: Draw a neat sketch of cup type current meter and explain its working. Current meter is used to find out velocity of water. Current meter consist of a wheel containing blades on cups. These cups are vertically immersed in stream of water. The thrust exerted by water on the cups. The number of revolutions of the wheel per unit time is proportional to the velocity of flow. The revolution counter operated by dry cell. The counter is calibrated or a calibration curve is provided to read velocity.	01 02 02	04

Que. No.	Sub. Que.	Model Answers			Marks	Total Marks
5.	c)	Write any four advantages of triangular notch over rectangular notch. Advantages of triangular notch of rectangular notch:				
	Ans.	Advantages of triangular notch of rectangular notch: 1) Triangular notch gives more accurate results for low discharge. 2) Ventilation of triangular notch is not necessary. 3) In triangular notch only height is measure. 4) The expression for discharge for right angle V-notch is very simple. 5) In most of the cases of flow over triangular notch velocity approach may be neglected.			1 Mark each (any four)	04
	d)					
		Define i)Static head ii) Manometric head of				
	Ans.	i) Static head- The sum of suction head and delivery head is known as static head.				
		$\mathrm{hs}=\mathrm{h}_{\mathrm{s}}+\mathrm{h}_{\mathrm{d}}$			02	
		ii) Manometric head- It is sum of suction head, delivery head, major loss in suction and delivery pipes and minor losses in the system.				04
		$\mathrm{h}_{\mathrm{m}}=\mathrm{h}_{\mathrm{s}}+\mathrm{h}_{\mathrm{d}}+\mathrm{h}_{\mathrm{fs}}+\mathrm{h}_{\mathrm{fd}}+\text { minor losses }$ Differentiate between centrifugal pump and reciprocating pump (Any four points)			02	
	e)					
	Ans.	Sr. No.	Centrifugal pump	Reciprocating pump		
		1	For Centrifugal pump discharge is continuous	For Reciprocating pump discharge is fluctuating		
		2	Suitable for large discharge and small heads	Suitable for less discharge and higher heads	4 Marks	
		3	aple in in construction because of less number of	Complicated in construction because of more number of parts	(any four)	04
		4	It has rotating elements so there is less wear and tear	It has reciprocating element , there is more wear and tear		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	c)	$\begin{aligned} & 0=\frac{P_{C}}{\gamma_{C}}+\frac{2.801^{2}}{2 \times 9.81}+3+\left(\frac{4 \times 0.005 \times 100 \times 2.801^{2}}{2 \times 9.81 \times 0.2}\right) \\ & 0=\frac{P_{C}}{\gamma_{C}}+3.39+4 \\ & 0=\frac{P_{C}}{9810}+7.39 \\ & P_{C}=-72.49 \mathrm{KN} / \mathrm{m}^{2} \\ & \mathbf{P}_{\mathrm{C}}=\mathbf{7 2 . 4 9} \mathbf{~ K N} / \mathrm{m}^{2} \text { (Vacuum) } \end{aligned}$ A trapezoidal most economical channel section has side slopes 1.5 $(\mathrm{H}): 1(\mathrm{~V})$. It is required to discharge $20 \mathrm{~m}^{3} / \mathrm{sec}$ with a bed slope of 1 m in 6 km . Design section using Manning's formula. Take $\mathrm{N}=0.015$. Given side slopes $=1.5 / 1=1.5$ Bed slope $=s=1 / 6000 \mathrm{~m}$ Discharge $=20 \mathrm{~m}^{3} / \mathrm{s}$ $\mathrm{N}=0.015$ For trapezoidal section most economical condition the formula is Sloping side $=1 / 2$ (Top width) $\begin{aligned} & d \sqrt{1+n^{2}}=\frac{b+2 n d}{2} \\ & d \sqrt{1.5^{2}+1}=\frac{b+2 \times 1.5 d}{2} \\ & 1.8 \mathrm{~d}=\mathrm{b}+3 \mathrm{~d} / 2 \\ & 3.6 \mathrm{~d}=\mathrm{b}+3 \mathrm{~d} \\ & 0.6 \mathrm{~d}=\mathrm{b} \\ & \text { Area of trapezoidal section } \\ & \mathrm{A}=\mathrm{bd}+\mathrm{nd} \\ & =(0.6) \mathrm{d}+1.5 \mathrm{~d}^{2} \\ & \mathrm{~A}=2.1 \mathrm{~d}^{2} \end{aligned}$	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		Manning's formula, $\begin{aligned} & Q=\frac{A}{N} R^{2 / 3} S^{1 / 2} \\ & 20=\frac{2.1 d^{2}}{0.015}\left(\frac{d}{2}\right)^{2 / 3}\left(\frac{1}{6000}\right)^{1 / 2} \\ &=140 d^{2} \frac{d^{2 / 3}}{(2)^{2 / 3}} \times 0.0129 \\ & 20=\frac{1.807}{1.587} \times d^{8 / 3} \\ & 20=1.1386 \times d^{8 / 3} \\ & d^{8 / 3}=17.565 \\ & d=(17.565)^{3 / 8} \\ & d=2.929 \mathrm{~m} . \\ & b=0.6 \times 2.929=1.757 \mathrm{~m} \end{aligned}$	01 01 01 01	08

