## Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Que. <br> No. | Sub. <br> Que. | Model Answers | Marks | Total <br> Marks |
| :---: | :---: | :--- | :---: | :---: |
| Q.1 | (a) | Attempt any TEN of the following: <br> Define Surface Tension. State its units. <br> Ans. <br> Definition- the tension of the surface film of a liquid caused by the <br> attraction of the particles (cohesion) in the surface layer by the bulk of <br> the liquid, which tends to minimize surface area. <br> Surface tension is denoted by Greek letter ' $\sigma$ '. <br> Unit:-surface tension= force/length <br> ' $\sigma$ ' N/m. <br> (b) | $\mathbf{1}$ |  |
| State any two applications of hydraulics with respect to Irrigation. <br> Ans. <br> Applications of hydraulics with respect to Irrigation are as follows- <br> $\bullet$ <br> - To calculate discharge flowing through canal. <br> For distribution of equal water for city or agriculture purpose <br> using water meter. <br> - To determine velocity of flow at a point in open channel. <br> - The total pressure and Centre of pressure acting on dam face at <br> the point the resultant cuts the base of the can be determined. <br> - Spillway can also designed to pass off water on D/S of a dam. | Mark <br> each <br> (any <br> two) | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ |







| Que No. | Sub. Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 2 | d) | Determine the total pressure and centre of pressure on an isosceles triangular plate of base 4 m and altitude 4 m when it is immersed vertically in an oil of sp. Gravity 0.9 the base of the plate co insides with the free surface of oil. <br> Ans. <br> Given : $\begin{aligned} & \mathrm{B}=4 \mathrm{~m} \\ & \mathrm{H}=4 \mathrm{~m} . \end{aligned}$ <br> Total Pressure $=$ ? <br> Position of centre of pressure $=$ ? <br> 1. Total Pressure $=\mathrm{P}=\mathrm{S}_{\text {oil }} \mathrm{W}_{\mathrm{w}} \mathrm{A} \overline{\mathrm{y}}$. $\begin{aligned} & \text { Area }=\mathrm{A}=\frac{b_{h}}{2} \\ & \mathrm{~A}=8 \mathrm{~m}^{2} . \\ & \overline{\mathrm{y}}=\frac{h}{3}=\frac{4}{3}=1.33 \mathrm{~m} . \end{aligned}$ <br> Hence, <br> Total Pressure $=\mathrm{P}=0.9 \times 9.81 \mathrm{X} 8 \mathrm{X}$ 1.33. $\mathrm{P}=93.94 \mathrm{KN}$ <br> 2. Position of centre of pressure $=\hbar=\frac{I G}{A \bar{y}}+\bar{y}$ $\mathrm{IG}=\frac{b h^{\wedge} 3}{36}=\frac{4 * 4^{\wedge} 3}{36}=7.11 \mathrm{~m}^{4}$ <br> Hence, $\begin{aligned} & \mathrm{h}=\frac{7.11}{8 \times 1.33}+1.33 . \\ & \mathbf{h}=\mathbf{1 . 9 9} \approx \mathbf{2} \mathbf{~ m} . \end{aligned}$ | 1 <br> 1 <br> 1 <br> 1 | 4 |


| Que. <br> No. | Sub. Que. | Model Answers | Marks | Total <br> Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 2 | (e) | Explain briefly the working principle of Bourdon pressure gauge with a neat sketch. <br> Ans. <br> Bourdon Tube Pressure Gauge <br> Working : <br> The pressure to be measured is connected to the fixed open end of the bourdon tube. The applied pressure acts on the inner walls of the bourdon tube. Due to the applied pressure, the bourdon tube tends to change in cross - section from elliptical to circular. This tends to straighten the bourdon tube causing a displacement of the free end of the bourdon tube. This displacement of the free closed end of the bourdon tube is proportional to the applied pressure. As the free end of the bourdon tube is connected to a link - section - pinion arrangement, the displacement is amplified and converted to a rotary motion of the pinion. As the pinion rotates, it makes the pointer to assume a new position on a pressure calibrated scale to indicate the applied pressure directly. As the pressure in the case containing the bourdon tube is usually atmospheric, the pointer indicates gauge pressure. <br> A simple manometer ( $\mathbf{U}$ tube) containing mercury is connected to a pipe in which an oil of sp . Gr. 0.8 is flowing. The pressure in the pipe is vacuum. The other end of the manometer is open to the atmosphere. Find the vacuum pressure in pipe, if the difference of mercury level in the two limbs is 20 cm and height of oil in the left limb from Centre of pipe is 15 cm below. <br> Ans. <br> Given : $\begin{aligned} & \mathrm{S}_{1}=0.8 \\ & \mathrm{H}_{1}=15 \mathrm{~cm} .=0.15 \mathrm{~m} . \\ & \mathrm{H}_{2}=20 \mathrm{~cm}=0.2 \mathrm{~m} . \\ & \mathrm{S}_{2}=13.6 \end{aligned}$ | 2 | 4 |




| Que. No. | Sub. Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 3 | (c) | Find the loss of head when a pipe of diameter 200 mm is suddenly enlarged to a diameter of 400 mm the rate of flow of water through the pipe is 250 LPS. <br> Ans. <br> Given $\begin{aligned} & \mathrm{d}_{1}=200 \mathrm{~mm}=0.2 \mathrm{~m} \\ & \mathrm{~d}_{2}=400 \mathrm{~mm}=0.4 \mathrm{~m} \\ & \mathrm{Q}=250 \mathrm{LPS}=250 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\ & \mathbf{a}_{\mathbf{1}}=\pi / 4 \times(0.2)^{2}=0.031 \mathrm{~m}^{2} \\ & \mathbf{a}_{2}=\pi / 4 \times(0.4)^{2}=0.125 \mathrm{~m}^{2} \\ & \mathrm{Q}=\mathrm{a}_{1 \times} \times \mathrm{v}_{1} \\ & 250 \times 10^{-3}=0.03 \times \mathrm{v}_{1} \\ & \mathbf{V}_{\mathbf{1}}=\mathbf{8 . 0 6} \mathbf{~ m} / \mathrm{s} \\ & \mathrm{Q}=\mathrm{a}_{2} \times \mathrm{v}_{2} \\ & 250 \times 10^{-3}=0.125 \times \mathrm{v}_{2} \\ & \mathbf{V}_{\mathbf{2}}=\mathbf{2 ~ \mathbf { ~ m }} / \mathbf{s} \\ & \mathrm{H}=\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)^{2} / 2 \mathrm{~g} \\ & =(8.06-2)^{2} / 2 \times 9.81 \\ & \mathbf{H}=\mathbf{1 . 8 7 1} \mathbf{~ m} \end{aligned}$ <br> An oil of specific gravity 0.9 and viscosity 0.06 poise is flowing through a pipe of diameter 200 mm at the rate of 60 LPS. find the head loss due to friction for a $\mathbf{5 0 0} \mathbf{~ m}$ length of pipe. Take $f=0.02$ <br> Ans. <br> Given $\begin{aligned} & \mathrm{D}=200 \mathrm{~mm}=0.2 \mathrm{~m} \\ & \mathrm{Q}=60 \mathrm{LPS}=60 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\ & \mathrm{~L}=500 \mathrm{~m} \\ & \mathrm{f}=0.02 \\ & \mathbf{H}_{\mathrm{f}}=\mathbf{f L Q} \mathbf{Q}^{2} / \mathbf{1 2 . 1 D ^ { 5 }} \\ & \mathrm{H}_{\mathrm{f}}=\left(0.02 \times 500 \times(60 \times 10-3)^{2}\right) /\left(12.1 \times(0.2)^{5}\right) \\ & \mathbf{H}_{\mathrm{f}}=\mathbf{9 . 2 9} \mathbf{~ m} . \end{aligned}$ <br> Define HGL and TEL with sketch. <br> Ans. <br> HGL - <br> 1) Due to friction the pressure head decreases gradually from section of the pipe in the direction of flow <br> 2) If the pressure head at the different section of the pipe are plotted to the scale as vertical ordinate above the axis of the pipe <br> 3) All the points are joint by the straight line, we get a straight sloping line. This line is known as "Hydraulic Gradient line" | 1 1 1 1 1 1 1 1 1 1 112 | 4 |

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks <br>
\hline Q. 3 \& (e)

(f) \& \begin{tabular}{l}
TEL - <br>
1)when the total energy at the various points along the axis of the pipe is plotted and joint by the line, the line obtained is called as "Total Energy line"(TEL) or Total energy gradient (TEG) <br>
Total energy line is the line which gives sum pressure head, datum head and kinetic head of a flowing fluid
$$
\mathrm{TEL}=(\mathrm{P} / \mathrm{Y})+\left(\mathrm{v}^{2} / 2 \mathrm{~g}\right)+(\mathrm{z})
$$ <br>
What do you mean by Hydraulic jump? Explain with sketch? Ans. <br>
1) It is the phenomenon occurring in an open Chanel when rapidly flowing stream abruptly change to slowly flowing stream causing a distance rise or jump in level of liquid surface <br>
2) Hydraulic jump formed on a horizontal floor of canal and at the downstream side of spillway, at the downstream side of sluice gate, or at the downstream side of canal fall <br>
Uses of Hydraulic Jump: This phenomenon is used in hydraulic structures constructed for irrigation, water supply works such as: <br>
1) Energy dissipation below the spillway of dam <br>
2) Mixing of chemicals in water treatment plants <br>
3) Retaining head in canal if head drops due to losses in long canals

 \& 

$1^{112}$ <br>
1 <br>
1 <br>
2
\end{tabular} \& $4{ }^{4}$ <br>

\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline Q. 4 \& \begin{tabular}{|c} 
(d) \\
\\
\\
\\
\\
\\
(e) \\
\\
(f)
\end{tabular} \& \begin{tabular}{l}
What is Priming? Why is it necessary. \\
Ans. \\
Priming is the process of filling the suction pipe of pump and portion of delivery pipe up to delivery valve with the liquid which is to be pumped. \\
Necessity- \\
i. The liquid to be pumped is filling through the priming inlet to remove air from the pump. \\
ii. If a small air pocket is present in any portion of pump results in no delivery from pump. \\
With a neat sketch explain the principle and working of centrifugal pump. \\
Ans. \\
Principle-When certain mass of liquid is made to rotate by an external force it is thrown away from the central axis of rotation and a centrifugal head is impressed which enables it to rise to higher level. \\
Working of centrifugal pump is in 3 stages \\
i. Priming \\
ii. Starting \\
iii stoping \\
i. Priming- The operation of filling the casing, impeller and suction pipe upto delivery valve is called priming. \\
ii. Starting- Before starting first of all check that priming is done and return valve is not in closed condition. \\
iii. Stoping - To stop the pump, delivery valve should be closed partly. Motor is switched off and then value is closed fully.
\end{tabular} \& 2 \& 4

4 <br>
\hline
\end{tabular}



| Que. <br> No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 5 | (a) | $\begin{aligned} & Q=\frac{C d . a 1 . a 2 . \sqrt{(2 g h)}}{\left.\sqrt{\left(a 1^{2}\right.}-a 2^{2}\right)} \\ & Q=\frac{0.98 \times 0.0314 \times 7.85 \times 10^{-3} \times \sqrt{2 \times 9.81 \times 4}}{\sqrt{0.0314^{2}-\left(7.85 \times 10^{-3}\right)^{2}}} \\ & \mathbf{Q}=\mathbf{0 . 0 7 0 4} \mathbf{~ m}^{3} / \mathrm{s} \end{aligned}$ <br> A trapezoidal Channel has side slopes of $\mathbf{3 H}$ to V and slope of its bed is 1 in 2000. Determine the optimum dimensions of the channel, if its is to carry water at $0.5 \mathrm{~m}^{\mathbf{3}} / \mathrm{s}$. Take Chezy's constant as 80. <br> Ans $\begin{aligned} & \mathrm{Q}=0.5 \mathrm{~m}^{3} / \mathrm{s} \\ & \mathrm{~S}=1 / 2000 \\ & \mathrm{n}=3 / 4=0.75 \\ & \mathrm{c}=80 \end{aligned}$ <br> For the most economical trapezoidal section <br> Half of top width $=$ sloping side $\begin{aligned} & \frac{b+2 n d}{2}=d \sqrt{1+n^{2}} \\ & \frac{b+2 \times 0.75 d}{2}=d \sqrt{1+0.75^{2}} \\ & \frac{b+1.5 d}{2}=1.25 d \\ & \mathrm{~b}+1.5 \mathrm{~d}=2.5 \mathrm{~d} \\ & \mathbf{b}=\mathbf{d} \\ & \mathrm{A}=\mathrm{bd}+\mathrm{nd}^{2} \\ & \mathrm{~A}=\mathrm{dd}+0.75 \mathrm{~d}^{2} \\ & \mathbf{A}=\mathbf{1 . 7 5} \mathbf{d}^{2} \\ & Q=A C \sqrt{R S} \\ & 0.5=1.75 d^{2} \times 80 \times \sqrt{\frac{d}{2} \times \frac{1}{2000}} \end{aligned}$ <br> Squaring both sides $\begin{aligned} & 0.5^{2}=\left(1.75 \mathrm{~d}^{2}\right) \times 80^{2} \times(\mathrm{d} / 2) \times(1 / 2000) \\ & 0.5^{2}=4.9 \mathrm{~d}^{5} \\ & \mathrm{~d}^{5}=0.5^{2} / 4.9 \\ & d=0.05102^{\frac{1}{5}} \\ & \mathbf{d}=\mathbf{0 . 5 5 1} \mathbf{~ m} \\ & \mathrm{b}=\mathrm{d} \\ & \mathbf{b}=\mathbf{0 . 5 5 1} \mathbf{~ m} \end{aligned}$ | 2 <br> 2 <br> 1 <br> 1 <br> 1 <br> 1 <br> 1 <br> 2 <br> 1 <br> 1 | 8 |


| Que. No. | Sub. Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 5 | c) | A siphon of diameter 20 cm connects two reservoirs having a difference in elevation of 20 cm . the length of the siphon is 500 m , and the summit is 3.0 m above the water level in the upper reservoir. The length of the pipe from upper reservoir to the summit is 100 m . Determine the discharge through the siphon and also pressure at summit. Neglect minor losses. Take coefficient of friction, $f=0.005$. <br> Ans <br> Given, <br> $\mathrm{d}=\mathbf{0 . 2} \mathrm{m}$ <br> $\mathrm{H}=\mathbf{2 0} \mathrm{m}$ <br> $\mathrm{L}=\mathbf{5 0 0 m}$ <br> $\mathbf{Z}_{\mathrm{c}}=\mathbf{3} \mathbf{~ m}$ <br> $\mathrm{l}=100 \mathrm{~m}$ as the coefficient of friction is given use $\mathrm{f}=0.005$ <br> $\mathrm{Q}=$ ? $\quad \mathrm{P}=$ ? <br> Diagram- $\begin{aligned} h_{f} & =\frac{(4 f) L V^{2}}{2 g d} \\ 20 & =\frac{(4 \times 0.005) 500 V^{2}}{2 \times 9.81 \times 0.2} \\ 20 & =0.637 \times 4 V^{2} \\ V^{2} & =7.848 \\ \mathbf{V} & =\mathbf{2 . 8 0 1} \mathrm{m} / \mathbf{s} \end{aligned}$ | 1 <br> 1 <br> 1 |  |



| Que. <br> No. | Sub. Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 6 | (a) | Attempt any TWO : <br> A circular plate 3.0 m diameter is immersed in water in such a way that its greatest and least depth below the free surface are 4 m and 1.5 m respectively. Determine the total pressure on one face of the plate and position of the center of pressure. <br> Ans. <br> Given, $\begin{aligned} A & =\frac{\pi}{4} 3^{2} \\ \mathbf{A} & =7.0685 \mathbf{m}^{2} \\ I_{G} & =\frac{\pi}{64} d^{4} \\ I_{G} & =\frac{\pi}{64} 3^{4} \\ \mathbf{I}_{\mathbf{G}} & =\mathbf{3 . 9 7 6} \end{aligned}$ <br> Total pressure $\begin{aligned} & P={ }^{P} Y_{w} A \bar{y} \\ & P=9810 \times 7.0685 \times[(4+1.5) / 2] \\ & \mathrm{P}=190690.45 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}=190.690 \mathrm{KN} / \mathrm{m}^{2} \end{aligned}$ <br> Centre of pressure $\begin{aligned} & h=\bar{y}+\frac{I_{G} \sin ^{2} \theta}{A \bar{y}} \\ & \overline{\mathrm{y}}=\frac{4+1.5}{2}=2.75 \mathrm{~m} \\ & \operatorname{Sin} \Theta=2.5 / 3=0.833 \\ & h=2.75+\frac{3.976 \times 0.8333^{2}}{7.0685 \times 2.75} \\ & \mathbf{h}=\mathbf{2 . 8 9} \mathbf{~ m} \end{aligned}$ | 1 <br> 1 <br> 2 <br> 1 <br> 2 <br> 1 | 16 |


| $\begin{aligned} & \hline \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$ | Sub. Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 6 | (b) <br> (i) <br> (ii) | State Bernoulli's theorem <br> Ans. <br> Statement - It states that in an ideal incompressible fluid, when the flow is steady and continuous the sum of pressure energy ,kinetic energy and potential energy (or datum)energy along a stream line Mathematically $\mathrm{p} / \gamma+\mathrm{v}^{2} / 2 \mathrm{~g}+\mathrm{z}=\text { constant }$ <br> where, $\begin{aligned} & \mathrm{p} / \gamma=\text { pressure energy } \\ & \mathrm{v}^{2}+/ 2 \mathrm{~g}=\text { Kinetic energy } \\ & \mathrm{z}=\text { datum } \end{aligned}$ <br> A pipeline carry oil of sp.gr 0.87, changes in diameter from 200 mm diameter a position a to 500 mm diameter at a position $B$ which is 4 m at a higher level. If the pressure at ' $A$ ' and ' $B$ ' are $9.81 \mathrm{~N} / \mathrm{cm}^{2}$ and $5.886 \mathrm{~N} / \mathrm{cm}^{2}$ respectively and the discharge is 200 lit/sec. Determine the loss of head and direction flow. Ans. $\begin{aligned} & \mathrm{D}_{\mathrm{A}}=200 \mathrm{~mm} \\ & \mathrm{D}_{\mathrm{B}}=500 \mathrm{~mm} \\ & \mathrm{Z}=4 \mathrm{~m} \\ & \mathrm{P}_{\mathrm{A}}=9.81 \mathrm{~N} / \mathrm{cm}^{2}=98100 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}_{\mathrm{B}}=5.886 \mathrm{~N} / \mathrm{cm}^{2}=58860 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{Q}=200 \times 10^{-3} \\ & \mathbf{Q}=\mathbf{a}_{\mathrm{A}} \mathbf{X} \mathbf{V}_{\mathrm{A}} \\ & 200 \times 10^{-3}=\frac{\pi}{4} 0.2^{2} \times V_{A} \\ & \mathbf{V}_{\mathrm{A}}=\mathbf{6 . 3 6} \mathbf{~ m} / \mathbf{s} \end{aligned}$ | 1 <br> 1 <br> 1 <br>  <br> 2 <br>  <br> $1 / 2$ <br>  | 4 |



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION


