
SUMMER – 2015 EXAMINATION MODEL ANSWER

Subject & Code : Hydraulics (17421)

Page No: 1/24

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(A) (a) Ans.	Attempt any SIX Differentiate real and Ideal fluid. Real Fluid :- A fluid which possesses viscosity, is known as real fluid. All the fluids, in actual practice, are real fluids. Ideal Fluid :- A fluid which is incompressible and is having no viscosity, is known as an ideal fluid. Ideal Fluid is only an imaginary fluid.	01 01	02
	(b) Ans.	Define kinematic and dynamic viscosity. Give units of them. <u>Kinematic Viscosity :-</u> It is defined as the ratio between the dynamic viscosity (μ) and mass density of fluid (ρ). It is denoted by (γ). $\gamma = \frac{\mu}{\rho}$ Unit = m ² /sec <u>Dynamic Viscosity :-</u> It is defined as shear stress (τ) required to produce unit rate of shear strain(du/dy). It is denoted by (μ).	01	
		$\mu = \frac{\tau}{(du/dy)}$ Unit = N.sec/m ²	01	02

Subject & Code : Hydraulics (17421)

Page No: 2/24

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	(c) Ans.	Define atmospheric and vacuum pressure.Atmospheric Pressure :-At the earth surface, the pressure due to theweight of air above the earth surface is called as atmospheric pressure.Vacuum Pressure :-The pressure below the atmospheric pressure isknown as vacuum pressure.	01 01	02
	(d) Ans.	Why mercury is used in manometer? Following are the reasons due to which mercury is used in manometers :-	02	
		(i) Specific gravity of mercury is greater than the other liquids.(ii) Mercury is immiscible with other liquids.(iii) It does not stick to the surface in contact.	02 (any two)	02
	(e) Ans.	State Darcy Weisbach equation for frictional loss in pipe. Darcy Weisbach equation for frictional loss in pipe is – $h_f = \frac{flv^2}{2gd}$	01	
		$n_{f} = 2gd$ Where, hf = Loss of head due to friction $f = Friction factor$ $l = Length of pipe$ $v = Mean velocity of flow$ $d = Diameter of pipe.$	01 for terms used	02
	(f) Ans.	Explain phenomenon of water hammer. <u>Water hammer :-</u> When a long pipe is connected to tank on one end and another end is having a valve to regulate the flow of water When a valve is completely open, the water is flowing with a velocity V in the pipe. If now the valve is suddenly closed the momentum of flowing water will be destroyed and at the same time a wave of high pressure will be set up. This wave of high pressure will travel along the pipe with a velocity equal to the velocity of sound wave and create a noise called knocking. Also this wave of high pressure has the effect of hammering action on pipe walls and hence it is known as water	02	02
	(g) Ans.	hammer. Define Cd, Cv, Cc and state relation between them. <u>Coefficient of Discharge (Cd) :-</u> It is defined as ratio of actual discharge from an orifice to the theoretical discharge from the orifice.	1⁄2	
		<u>Coefficient of Velocity (Cv) :-</u> It is defined as ratio of actual velocity of a jet of a liquid at vena-contracta to the theoretical velocity of jet.	1/2	
		$\frac{\text{Coefficient of Contraction (Cc) :-}}{\text{Coefficient of Contraction (Cc) :-}} \text{ It is defined as ratio of area of jet at vena-contracta to the area of orifice.}$ $\frac{\text{Relation between Cd, Cv, Cc is }-}{\text{Cd} = \text{Cv X Cc}}$	1/2 1/2	02
	(h)	State the situation where venturimeters, weir, current meter and flumes are used.		
	Ans.	At following situations venturimeters, weir, current meter and flumes are used –		

Subject & Code : Hydraulics (17421)

Page No: 3 /24

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		IVIAI NS	Marks
Q.1	(h)	(1) Venurimeter – To measure rate of flow / discharge of a liquid flowing through a pipe.	1/2	
		(2) Weir – To measure rate of flow / discharge of a liquid flowing	1/2	
		through rivers or streams.	1/2	
		(3) Current meter – To determine velocity of flow at a required	1/2	
		point in a flowing stream. (4) Flumes - To measure rate of flow / discharge of a liquid	1/2	
		flowing through an open channel.	1/2	02
	(B)	Attempt any TWO.		
	(a)	A shaft of 150 mm diameter rotates at 75 rpm in a 500 mm long bearing. Taking that two surfaces are uniformly separated by a distance of 1 mm and considering linear velocity distribution having viscosity of 0.005 N-s/m ² . Find the power absorbed in the bearing.		
	Ans.	<u>Givens :-</u>		
		Diameter of shaft (D) = $150 \text{ mm} = 0.150 \text{ m}$		
		Length of bearing (L) = 500 mm = 0.5 m t = 1 mm = 1 X 10^{-3} m		
		$\mu = 0.005 \text{ Ns/m}^2$		
		N = 75 rpm		
		Solution :-		
		Power absorbed in the bearing $u \sigma^3 D^3 N^2 I$	02	
		$P = \frac{\mu \pi^3 D^3 N^2 L}{60X 60X t}$	02	
		$= \frac{0.005 \text{ x } \pi^3 \text{ x } (0.150)^3 \text{ x } (75)^2 \text{ x } 0.5}{60 \text{ x } 60 \text{ x } 1 \text{ x } 10^{-3}}$	01	
		$60 \ x \ 60 \ x \ 1 \ x \ 10^{-3}$ $P = 0.408 \ W$	01	04
	(b)	Define compressibility. How it is related to bulk modulus of		
		elasticity? Name some hydraulic problems where compressibility		
	Ans.	of water is taken into account. <u>Compressibility :-</u> It is defined as the ratio of compressive stress to		
	1 11.5.	volumetric strain.	02	
		Relation of compressibility with bulk modulus of elasticity:- It is a		
		reciprocal of the bulk modulus of elasticity.	01	0.4
		<u>Hydraulic problems where compressibility of water is taken into account:</u> In case of water hammer, where the change of pressure is	01	04
		very large, it is necessary to consider compressibility.	UI	
	(c)	A concrete dam of rectangular section 15 m deep and 8 m wide		
		containing water upto 13 m. Find		
		(i) Total pressure of water on 1 m length(ii) Depth of centre of pressure above base		
		(iii) The point at which resultant cuts the base		

Subject & Code : Hydraulics (17421)

Page No: 4 /24

Que.	Sub. Oue	Model Answers	Marks	Total Marks
No. Q.1	Que. Ans.	Givens :-		Marks
Q.	1 11150	Height of dam = 15 m		
		Depth of water = 13 m		
		Width of dam $= 8 \text{ m}$		
		Assuming weight of masonry = 25 KN/m^3		
		Solution :-		
		15 m 13 m G		
		W R (b/2) x		
			01	
		(1) Total pressure on 1 m length of dam (P) $P = \binom{1}{2} \gamma_{w} H^{2}$		
		= $(1/2) \times 9.81 \times 13^2$ = 828.945 KN per m length of dam	01	
		(2) Depth of centre of pressure above base The pressure will act at H/3 from the base.		
		= 13 / 3 = 4.333 m from the base	01	
		(3) The point at which the resultant cuts the base		
		Let x be the horizontal distance from midpoint of the base of the		
		dam. The resultant cuts the base at a distance x from the midpoint.		
		The weight of masonry per unit length of the dam		
		W = Volume of wall of unit length X Specific weight of masonry- (15 X 8 X 1) X 25		
		= (15 X 8 X 1) X 25 = 3000 KN		
		We know,		
		x = (P/W) X (H/3)		
		$= (828.945 / 3000) \times 4.333$		
		= 1.197 m		
		The resultant cuts the base at a distance of 1.197 m from the midpoint of the base of the dam.	01	04
Q.2		Attempt any FOUR.		
	(a)	A circular plate of 4 m diameter is immersed vertically in water so that its upper edge is 1 m below the water. The plate is having a triangular hole which has a base of 80 cm and height of 60 cm in		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Summer 2015

Subject & Code : Hydraulics (17421)

Page No: 5 /24

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	(a)	such a position that its vertex coincides with the centre of plate as		IVIAIKS
		shown in Fig. Find total pressure acting on the plate and its centre of pressure.		
	Ans.	Givens :-		
		Dia. of circular plate = 4 m Base of triangle = 80 cm		
		Height of triangle = 60 cm		
		Solution :-		
		4 m¢ - ()		
		4 mo =		
		+80 cm+		
		(1) Total Pressure on the circular plate		
		$P_1 = \gamma . x^A$		
		$= 9810 \text{ x} (1+2) \text{ x} (\pi/4) (4^2)$		
		$= 369.828 \times 10^{3} \text{ N}$ = 369.828 KN	01	
		(2) Total Pressure on the triangular hole		
		$P_2 = \gamma. x A$		
		$= 9810 \text{ x} (1+2+((2/3)x0.60)) \text{ x} (1/2 \text{ x} 0.80 \text{ x} 0.60)$ $= 8.00 \text{ x} 10^3 \text{ N}$		
		= 8.00 KN	01	
		(3) Total pressure on one side of the plate		
		$P = P_1 - P_2 = 369.828 - 8.00$		
		= 361.828 - 8.00 = 361.828 KN		
		(4) Position of centre of pressure	01	
		$\overline{h}_{1} = \frac{Ig\sin^{2}\theta}{A\overline{x}} + \overline{x}$		
		11.7		
		$= \frac{[(\pi/64) \times (4^4)]}{\{ [(\pi/4) \times (4^2)] \times (1+2) \}} + (1+2)$		
		= 3.333 m		
		$\overline{h}_2 = \frac{Ig\sin^2\theta}{A.\overline{x}} + \overline{x}$		
		$= \frac{A.\overline{x}}{[(0.8) \times (0.6)^3/36]} + [1+2+((2/3) \times 0.60)]$		
		1000000000000000000000000000000000000		
		= 3.406 m		
		$\overline{h} = \frac{P_1 \overline{h}_1 - P_2 \overline{h}_2}{P}$		
		$P = (369.828 \times 3.333) - (8.00 \times 3.406)$		
		361.828		
		= 3.331 m from free liquid surface	01	04

Subject & Code : Hydraulics (17421)

Page No: 6/24

No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	(b) Ans.	Define Pascal's law and state its applications and limitations.Pascal's Law :-It states that the pressure intensity or pressure at apoint in a static fluid is equal in all directions.Applications of Pascals law :-It is applied in the construction ofmachines used for multiplying forces e.g. hydraulic jacks, hydraulicpress, hydraulic lifts, hydraulic crane etc.Limitations of Pascals law :Fluid must be in rest condition only.	02 01 01	04
	(c)	A pipe line which is 2 m in diameter contains a gate valve. The pipe contains oil of specific gravity of 0.80. The pressure at the centre of pipe is 6 N/cm ² . Find the force exerted by the oil upon the gate and position of centre of pressure.		
	Ans.	$\frac{\text{Givens :-}}{d = 2 \text{ m}}$ $s = 0.80$ $p = 6 \text{ N/cm}^2$ <u>Solution :-</u> $Oil s = 0.8$ Gate Valve		
		$p = 6$ N/cm2 Converting pressure into pressure head (1) Equivalent height of oil above the pipe $h = x^{-} = \frac{P}{\gamma} = \frac{6 \times 10^{4}}{9810 \times 0.8} = 7.645 \text{ m}$ (2) Force exerted by oil upon gate	01	
		$A = (\pi/4) (2^2) = 3.142 \text{ m}^2$ Ig = (\pi/64) (2^4) = 0.785 m ⁴ P = \gamma \xec{x}^- A = 9810 \xec{x} 0.8 \xec{x} 7.645 \xec{x} 3.142 = 188.489 KN \overline{h} = \frac{Ig}{A.\overline{x}} + \overline{x} (3)	01	
		$= \underbrace{0.785}_{(3.142 \times 7.645)} + 7.645$	01	
		= 8.168 m (4) Centre of pressure = h^- - h = 8.168 - 7.645 = 0.523 m from centre of pipe	01	04

Subject & Code : Hydraulics (17421)

Page No: 7 /24

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	(d)	Calculate height 'h' as shown in Fig.		Warks
		25 kPa 25 kPa AIR AIR AIR V V V V V V V V		
	Ans.			
		Solution :-Pressure head on Left Hand Side = Pressure head on Right Hand Side $(25 / 9.81) + 2.5 + 0.5 + h$ $= (-13.6 \ge 0.250) + [0.80 \ge 0.25$	02	
		5.548 + h = -3.4 + 6.8 + 1.65 h		
		5.548 + h = 3.4 + 1.65 h 5.548 - 3.4 = 1.65 h - h		
		2.148 = 0.65 h	01	
		h $= 2.148 / 0.65$	Ŭ.	
		h = 3.305 m	01	04
	(e) Ans.	Classify and define types of fluid flow. <u>Classification of Fluid flow :-</u> (1) Steady and Unsteady Flow (2) Uniform and Non-uniform Flow (3) Laminar and Turbulent Flow (4) Rotational and irrotational flow <u>Definations :-</u>	02	
		 (1) Steady Flow :- It is defined as that type of flow in which the fluid characteristics like velocity, pressure, density etc. at a point does not change with time. (2) Unsteady Flow :- It is defined as that type of flow in which the fluid characteristics like velocity, pressure, density etc. at a point changes with time. (3) Uniform Flow :- It is defined as that type of flow in which the velocity at any given time does not change with respect to space. (4) Non-Uniform Flow :- It is defined as that type of flow in which the velocity at any given time changes with respect to space. (5) Laminar Flow:- It is defined as that type of flow in which the fluid particles move along well – defined path and all stream lines are straight and parallel. 		

Subject & Code : Hydraulics (17421)

Page No: 8/24

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	(e)	 (6) Turbulent Flow:- It is defined as that type of flow in which the fluid particles moves in a zig – zag way. (7) Rotational Flow :- It is defined as that type of flow in which the fluid particles while moving along stream line, also rotates about their own axis. (8) Irrotational Flow :- It is defined as that type of flow in which the fluid particles while moving along stream line, does not rotates about their own axis. 	1/2 (any four types)	04
	(f)	Define and draw flow net. State properties and applications of flow net.		
	Ans.	Flow net:- Pattern obtained by the intersections of_stream lines and equipotential lines is called as flow net. Field Fie	01	
		Dronerties of flow not :	01	
		 <u>Properties of flow net :-</u> (1) Equipotential lines and stream lines are perpendicular to each other. (2) Discharge through each channel is same. (3) The obtained grid of Equipotential lines and stream lines forms a square. <u>Applications of flow net :-</u> 	01 (any two)	
		 After drawing a flow net for a given set of boundary conditions, (1) It may be used for all irrotational flows with geometrical similar boundaries. (2) The spacing between the adjacent streamlines is determined & application of the continuity equation gives velocity of flow at any point, if velocity of flow at any reference point is known. (3) To know seepage pressure and discharge. 	01 (any two)	04

Subject & Code : Hydraulics (17421) Page No: 9/24 Oue. Total Sub. Model Answers Marks No. Marks Que. Q.3 Find the height at which water jet will shoot out of nozzle. Neglect a. loss of energy pressure p = 20 kN/m2. using continuity equation, Ans. $A_1V_1 = A_2V_2$ $\frac{\pi}{4} \times d_p^2 \times v_1 = \frac{\pi}{4} \times d_Q^2 \times v_2$ 1 $v_1 = 0.25v_2$ using Bernoulli's theorem to points Q and R where R is the point till the jet reaches, $5+0+\frac{v_2^2}{2g}=5+0+h+0$ $\frac{v_2^2}{2g} = h$ 1 Again, using bernoulli's equation to points P and Q $0 + \frac{20}{9.81} + \frac{v_2^2}{2g} = 5 + 0 + \frac{v_2^2}{2g}$ $2.04 + \frac{(0.25v_2)^2}{2g} = 5 + 0 + h$ 2.04 + 0.0625h = 5 + h0.9375h = 2.04 - 52 4 h = -3.15The height at which jet will shoot out of nozzle=3.15m b. A pipe line changes in size from 30 cm ø at B. It is used to carry oil of specific gravity 0.80. Point A is 5 m lower than point B and the pressure are 80 kN/m² and 60 kN/m² respectively. If the discharge is 200 LPS. Find the loss of head and direction of flow. Ans. $Q = A_1 V_1 = A_2 V_2$ $V_1 = \frac{0.2}{\frac{\pi}{4} \times 0.3^2}, V_2 = \frac{0.2}{\frac{\pi}{4} \times 0.6^2}$ 1 $V_1 = 2.83 \text{ m/s}$ $V_2 = 0.707 \text{ m/s}$ Total energy at A= $\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + z_1$ $=\frac{80000}{9810}+\frac{2.83^2}{2g}+0$ 1 Total energy at A=8.56 m Total energy at B= $\frac{60000}{9810} + \frac{0.707^2}{2g} + 5$

1

Total energy at B=11.14 m

Subject & Code : Hydraulics (17421)

Page No: 10 /24

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3		As total energy is more at B than A , flow is from B to A Loss of head = $11.14 - 8.56 = 2.58$ m	1	4
	c. Ans.	Explain Moody's diagram and state its application. Moody's chart is a curve showing the relation between Reynolds	2	
		Number (Re) and friction factor, f. It is the graph in which Re is		
		plotted on x axis and f on y axis. The curves are plotted on the results		
		of experiments.		4
		Moody's chart is used to find friction factor of a given pipe. If the $\int D/W = \int D = \int \int D = \int $	2	
		values of R/K and Re of flow are known. where R is radius of pipe		
		and K is sand grain roughness.		
	d.	Find the discharge and maximum length of inlet leg. Permissible pressure at summit is zero.		
	Ans.	Applying Bernoulli's theorem at A to B		
		$H = 0.5 \frac{v^2}{2g} + \frac{f l v^2}{2g d} + \frac{v^2}{2g}$		
		$10 = \frac{v^2}{2g} (1.5 + \frac{fl}{D}) = \frac{v^2}{2g} (1.5 + \frac{0.02 \times 800}{0.3})$		
		0 0	1	
		$V = \sqrt{\frac{10}{2.79}} = 1.89m/s$		
		$Q = A.V = \frac{\pi}{4} \times 0.3^2 \times 1.89 = 0.1338m^3 / s$	1	
		$Q = 0.1338 \ lps$	1	
		Now, for finding length of inlet leg, apply Bernoulli's equation between A & summit $y^2 = f y^2 = y^2$		
		$10.3 = 5 + 0.5 \frac{v^2}{2g} + \frac{fl_1 v^2}{2gD} + \frac{v^2}{2g}$	1	
		$0 = -10.3 + 5 + 0.5 \frac{v^2}{2g} + \frac{fl_1v^2}{2gD} + \frac{v^2}{2g}$		
		$= -10.3 + 5 + \frac{v^2}{2g} (1.5 + \frac{0.02l_1}{0.3})$		4
			1	4
		$l_1 = 414.16m$		

Subject & Code: Hydraulics (17421)

Page No. 11/24

Que.Sub.No.Que.	Model Answers	Marks	Total Marks
Q.3 e. Ans.	Draw nomogram axis diagram and explain how it is used for design water distribution pipes.		
	Nomograph is a graph as shown in Fig.	3	

Subject & Code: Hydraulics

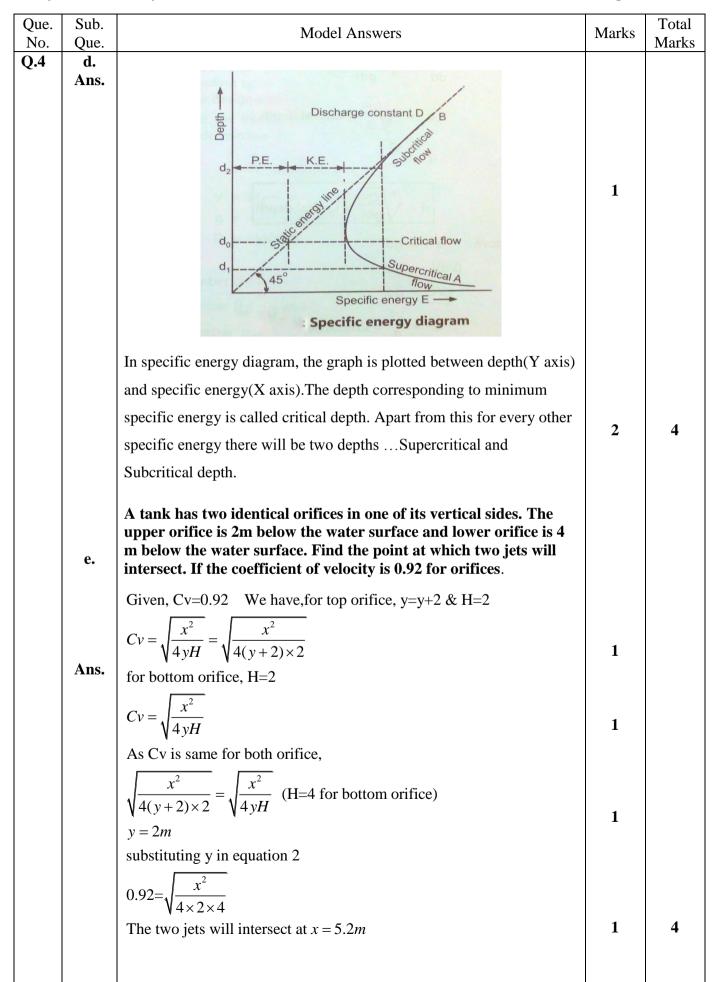
_ _

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
Q.3	f.	State types of open channels. Give hydraulic properties of circular and trapezoidal channels.		
	Ans.	ch cular and trapezoidal chamicis.		
		Types of channels are as follows-		
		1. Rectangular channel		
		2. Trapezoidal Channels	2	
		3. Semicircular channels		
		4. Circular channels		
		Hydraulic properties of circular channel		
		$A = \frac{\pi}{4} d^2$		
		$\begin{array}{c} 4\\ P=\pi D \end{array}$	1	
		$R = \frac{d}{4}$		
		4		
		Hydraulic properties of trapezoidal channel		
		A = d(b + nd)		
		$P = b + 2d\sqrt{1+n^2}$	1	4
		$R = \frac{d(b+nd)}{b+2d\sqrt{1+n^2}}$		
Q.4	a.	Define steady, unsteady, uniform and non uniform flow in open		
	Ans.	channel Steady flow : Flow characteristics like velocity, pressure, temperature	1	
		and density do not change with respect to time at any point.		
		Unsteady flow is one in which flow characteristics changes with respect to time	1	
		Uniform flow is a one in which the velocity and flow does not change	1	
		in magnitude and direction at different cross sections.	1	
		In non uniform flow the velocity of flow changes at different cross	1	4
		sections.	T	
Q.4	b.	Design a transgridal above al ta some a monimum discharge f		
		Design a trapezoidal channel to carry a maximum discharge of 5		
		cumecs. The longitudinal slope is 1:4000 side slopes 1:1, N=0.02,		
		b=3d.		

Subject & Code: Hydraulics (17421)

Page No.13 /24

--


Que.		Marks	Marks
b.			IVIAIK
	Area of section $A = (b+nd)d$		
Ans.	$=(3d+1\times d)d$ (b=3d given)		
	$A = 4d^2$		
	wetted perimeter $P = b + 2d\sqrt{n^2 + 1}$		
	$= 3d + 2d\sqrt{1^2 + 1}$		
	= 5.83 <i>d</i>		
	$R = \frac{A}{P} = \frac{4d^2}{5.83d} = 0.69d$	1	
	Using Mannings formula,		
	$V = \frac{1}{N} \times R^{\frac{2}{3}} \times S^{\frac{1}{2}} = \frac{1}{0.02} \times (0.69d)^{\frac{2}{3}} \times \left(\frac{1}{4000}\right)^{\frac{1}{2}}$		
	$V = 0.617 d^{\frac{2}{3}}$	1	
		-	
		2	4
c.	Define Froude's number. What is gradually varied flow and rapidly varied flow on open channel? How it is classified according to Fr. No.?		
Ans.	Froude's number is a dimensionless number and is the ration of inertia forces to gravity force.	1	
	In gradually varied flow, the depth of flow changes over a long	1	
		-	
		1	
		1	4
	short distance.		
	For, GVF, Fr<1 RVF, Fr>1	1	
d. Ans.	Define specific energy. Explain specific energy diagram. The specific energy of a flowing liquid is defined as the energy per	1	
	unit weight with respect to the bed of the canal as datum.		
	Ans.	Ans.=(3d+1×d)d (b=3d given) A =4d² wetted perimeter $P = b + 2d\sqrt{n^2 + 1}$ = $3d + 2d\sqrt{1^2 + 1}$ = $3d + 2d\sqrt{1^2 + 1}$ = $5.83d$ $R = \frac{A}{P} = \frac{4d^2}{5.83d} = 0.69d$ Using Mannings formula, $V = \frac{1}{N} \times R^{\frac{3}{2}} \times S^{\frac{1}{2}} = \frac{1}{0.02} \times (0.69d)^{\frac{2}{3}} \times \left(\frac{1}{4000}\right)^{\frac{1}{2}}$ $V = 0.617d^{\frac{2}{3}}$ We have, $Q = A \times V$ $S = 4d^2 \times 0.617d^{\frac{2}{3}}$ $d = 1.3m$ $b = 3d = 3.9m$ c.Define Froude's number. What is gradually varied flow and rapidly varied flow on open channel? How it is classified according to Fr. No.? Froude's number is a dimensionless number and is the ration of inertia 	Ans. $=(3d+1\times d)d$ (b=3d given) $A = 4d^2$ wetted perimeter $P = b + 2d\sqrt{n^2 + 1}$ $= 3d + 2d\sqrt{1^2 + 1}$ $= 5.83d$ 1 $R = \frac{A}{P} = \frac{4d^2}{5.83d} = 0.69d$ Using Mannings formula, $V = \frac{1}{N} \times R^{\frac{2}{3}} \times S^{\frac{1}{2}} = \frac{1}{0.02} \times (0.69d)^{\frac{2}{3}} \times \left(\frac{1}{4000}\right)^{\frac{1}{2}}$ 1 $V = 0.617d^{\frac{2}{3}}$ $d = 1.3m$ $b = 3d = 3.9m$ 2c.Define Froude's number. What is gradually varied flow and rapidly varied flow on open channel? How it is classified according to Fr. No.?2Ans.Froude's number is a dimensionless number and is the ration of inertia forces. In gradually varied flow, the depth of flow changes over a short distance.1d.Define specific energy. Explain specific energy diagram. The specific energy of a flowing liquid is defined as the energy per1

Subject & Code: Hydraulics(17421)

Subject & Code: Hydraulics 17421

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
110.	<u>f</u> .	A 30 x 15 cm venturimeter is provided in a vertical pipe line carrying oil of specific gravity 0.90, the flow being upwards. The difference in elevations of the throat section and entrance of the venturimeter is 50 cm. The difference U- tube mercury manometer shows a gauge deflection of 30 cm. Calculate i. Discharge ii. Pressure difference between the entrance and throat section Cd=0.98		
	Ans.			
		Inlet area, $A_1 = \frac{\pi}{4} \times 30^2 = 706.86 cm^2$		
		Throat area, $A_2 = \frac{\pi}{4} \times 15^2 = 176.71 cm^2$		
		Gauge deflection interms of oil		
		h = 30cm of Hg	1	
		$h = 30\left(\frac{13.9 - 0.9}{0.9}\right) = 423.3cm$ of oil	1	
		$Q = \frac{Cd \times a_1 \times a_2 \times \sqrt{2gh}}{\sqrt{a_1^2 - a_2^2}}$		
		$Q = \frac{0.98 \times 706.86 \times 176.71 \times \sqrt{2g \times 423.3}}{\sqrt{706.86^2 - 176.71^2}}$		
		$Q = 163000 cm^3 / s$	1	
		Q = 163lps		
		$Q = A_1 V_1 = A_2 V_2$	1	
		$V_1 = 230.6 cm/s$	1	
		$V_2 = 922.4 cm/s$		
		Applying Bernoulli's therem at inlet &throat		
		$Z_{1} + \frac{P_{1}}{\gamma} + \frac{V_{1}^{2}}{2g} = Z_{2} + \frac{P_{2}}{\gamma} + \frac{V_{2}^{2}}{2g}$		
		$0 + \frac{P_1}{\gamma} + \frac{230.6^2}{2g} = 50 + \frac{P_2}{\gamma} + \frac{922.4^2}{2g}$		
			1	4
		$\frac{P_1 - P_2}{\gamma} = 456.53cm$		

_ _

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Summer 2015

Subject & Code: Hydraulics(17421)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5	a Ans.	Explain working principle of current meter with sketch. State types of it Principle:- It is small reaction turbine. When placed in flow of water it rotates		Marks
		with speed . The velocity can be calibrated by observing revolutions per minute towing with a carriage mounted on rails, across still water at known velocities. Types of current meter 1)Cup type current meter 2)Propeller or screw type current meter	1	
		CUP TYPE CORRENT METER	1	
		Rider Rider COUNTER WEIGHT	(Any one diagra m)	
		SCREW TYPE CURRENTMETER	2	4
	b	A weir 6m long has 70cm head of water over its crest. Using Franci's formula, find the discharge over the weir. If approach channel is 7m wide & 1.5 m deep, calculate the new discharge considering velocity approach		
	ans.	For Case 1- Length=6m Head=70 cm=0.7m		

Subject & Code: Hydraulics(17421)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	b	Francis formula		Truins
		$Q = 1.84 \times (L - 0.1nH)H^{\frac{3}{2}}$	1	
		$Q = 1.84 \times (6 - 0.1 \times 2 \times 0.7) \times 0.7^{\frac{3}{2}}$		
		Q = 6.31	1	
		Case II Length=6m		
		Approch velocity = Q/A		
		=6.31/ (7X1.5)		
		Va =0.6m/s		
		Head due to velocity approach=Va ² /2g		
		$=0.6^2/2 \text{ x}9.81$		
		=0.0184m		
		Discharge considering velocity approach		
		$Q = 1.84(L - 0.1nH) \left[\left(H + h_a \right)^{\frac{3}{2}} - h_a^{\frac{3}{2}} \right]$	1	
		$Q = 1.84 \times 5.86 \times \left[\left(0.7 + 0.0184 \right)^{\frac{3}{2}} - \left(0.0184 \right)^{\frac{3}{2}} \right]$		4
		$Q = 10.78 \times [0.597]$	1	
		=6.43 m ³ /s		
	с	A reservoir has catchment area of 30km ² . The maximum rainfall over the area is 2.5 cm/hr, 45% of which flows to the reservoir over a weir . Find length of weir. The head over weir is 80 cm.		
	Ans.	Area = 30 km^2 = $30 \text{ x}10^6 \text{ m}^2$		
	A115.	Discharge = $(30 \times 10^6 \times 2.5) / (100 \times 60 \times 60)$	1	
		$=208.33 \text{ m}^3/\text{s}$		
		Discharge over weir 45%=45/100 x208.33	1	
		$=93.75 \text{ m}^{3}/\text{s}$	1	
				4

Subject & Code: Hydraulics(17421)

_ _

Page No.18 /24

Que.	Sub.		Model Ana		Morka	Total
No.	Que.		Model Ans	wers	Marks	Marks
Q.5	с	93.7:	throw 1.84×(L-0.1nH)H ^{$\frac{3}{2}$} 5=1.84×(L-0.1×2×0.8)×(0.8) ^{$\frac{3}{2}$} 5=1.84×(L-0.16)×0.715		1	
		93.7	$5 = 1.316 \times (L - 0.16)$			
		71.20	0 = (L - 0.16)			
	d.		36 m erentiate between centrifugal pu	mp & reciprocating pump.	1	4
	Ans.	Sr No	Centrifugal pump	Reciprocating pump		
		1	For Centrifugal pump discharge is continuous	For Reciprocating pump discharge is fluctuating		
		2	Suitable for large discharge and small heads	Suitable for less discharge and higher heads	1 mark	
		3	simple in in construction because of less number of parts	Complicated in construction because of more number of parts	each	
		4	It has rotating elements so there is less wear and tear	It has reciprocating element, there is more wear and tear	(Any four)	
		5	It can run at high speed	It cannot run at high speed		
		6	Air vessels are not required	Air vessels are required		
		7	Starting torque is more	Starting torque is less		
		8	It has less efficiency	It has more efficiency		
		9	Suction and delivery valve are not necessary	Suction and delivery valve are necessary		
		10	Requires less floor area and	Requires more floor area and		
			simple foundation	requires heavy foundation		

_ _

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Summer 2015

Subject & Code: Hydraulics(17421)

No.	Sub. Que.	Model A	Answers	Marks	Total Marks
Q.5	e	Enlist operating troubles & remea pump.	dial measures in centrifugal		Wark
	Ans.	Troubles	Remedies		
		1 Pump does not primed	Reprime the pump		
		2 Total static head more than	Use multistage pump	1	
		design head 3 Direction of rotation of impeller is wrong	Check the poles of motor	mark each	
		impeller is wrong 4 Clogging of impeller	Clean impeller	(Any four)	
		5 Suction lift is more	Lower the setting of pump		
		6 Clogging of strainer	Clean strainer		
		7 Speed is low	Wait till voltage becomes proper		4
		8 Other troubles	Contact maintenance person		
	Ans	75% Assume Darcy's f=0.06, tota	l minor loss=0.35m		
	Ans	Q=50 lps			
		$=0.05 \text{m}^{3}/\text{s}$			
		D =150mm=0.15m			
		L= 120 m			
		Efficiency %n=75%			
		Head loss = $\frac{FLQ^2}{12.1D^5}$		1	
		Head loss = $\frac{1.487 \times 10^{-3}}{0.15^5}$			
		Head loss = 19.5 m			
		Total head = $20+19.5+0.35$ 39.85 m		1	
		57.05 111			

Subject & Code: Hydraulics(17421)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5	<u><u> </u></u>	Power required		IVIAI KS
		$P = \frac{w \times Q \times H_m}{\eta}$ $P = \frac{9.81 \times 0.05 \times 39.85}{0.75}$ $P = 26.06 \text{ Kw}$	1	4
Q.6	(a) Ans.	Derive relation for pressure head difference for U tube manometer &inverted U tube manometer		
		DIFFRENTIAL U TUBE MANOMETER	1	
		Differential manometer		
		h_1 = height of liquid in left limb above xx		
		h_1 = height of inquite in fert line doo're xx h_2 = height of manometric liquid above xx		
		h_2 = height of hanometric liquid in right limb above manometric liquid	1	
		$S_1 =$ Specific gravity of liquid at A		
		$S_1 = Specific gravity of manometric liquidS_2 = Specific gravity of manometric liquid$		
		S_2 = Specific gravity of liquid at B		
		$H_A = Pressure Head at A$		
		$H_B = Pressure Head at B$		
		$P_A = Pressure at A$		
		$P_B = Pressure at B$		
		The difference of pressure is		
		Pressure in left limb =Pressure in right limb	1	
		$H_A+h_1 S_1 = H_B+h_2S_2+h_3 S_3$	1	
		$(H_A - H_B) = h_2 S_2 + h_3 S_3 - S_1 h_1$ Or $(P_A - P_B) = \gamma_2 h_2 + \gamma_3 h_3 - \gamma_1 h_1$	1	4

Subject & Code: Hydraulics(17421)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	a.	Inverted U tube manometer	1	Marks
		h_{3} $TNVERTED U TUBE MANOMETER$ $h_{1} = \text{Height of liquid in left limb below the datum line X- X}$ $h_{2} = \text{Height of lighter liquid below X- X}$		
		h_3 = Height of liquid in right limb below the manometric liquid S_1 = Specific gravity of liquid at A S_2 = Specific gravity of lighter liquid S_3 = Specific gravity of liquid at B P_A = Pressure at A	1	
		P_B = Pressure at B The difference of pressure is Pressure in left limb =Pressure in right limb H_A - h_1s_1 = H_B - h_2s_2 - h_3s_3	1	
		$(H_{A} - H_{B}) = s_{1} h_{1} - s_{2} h_{2} - s_{3} h_{3}$ Or $(P_{A} - P_{B}) = \gamma_{1} h_{1} - \gamma_{2} h_{2} - \gamma_{3} h_{3}$	1	8
	b.	A pipe PQRS of uniform diameter PQ= 120m QR=150m RS =60m ,RL at P,Q,R,S are 160,145, 175, 190m respectively. Pressure at P=0.30Mpa Pressure at R=0.07Mpa Find pressure at Q & R & find direction of flow.Neglect minor losses		
	Ans.	Pressure head at P = $\frac{P_P}{\gamma_L} = \frac{0.3 \times 10^6}{9810} = 30.58m$		

Subject & Code: Hydraulics(17421)

__

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	b. Ans.	Pressure head at S = $\frac{P_s}{\gamma_L} = \frac{0.07 \times 10^6}{9810} = 7.135m$	1	
		Let, V be the velocity of flow through pipe		
		Total energy head at P= $Z_P + \frac{P_P}{\gamma_L} + \frac{V_P^2}{2g}$		
		$= 60 + 30.58 + \frac{V_P^2}{2g}$		
		$=90.58 + \frac{V_{P}^{2}}{2g}$	1	
		Total energy head at S=Z _S + $\frac{P_S}{\gamma_L} + \frac{V_S^2}{2g}$		
		Total energy head at S= 90+7.135+ $\frac{V_s^2}{2g}$		
		Total energy head at S= 97.135 + $\frac{V_s^2}{2g}$	1	
		Since $V_p = V_s$, because diameter of pipe is same, the total energy		
		head at S is greater than total energy head at P, the flow is		
		from S to P.		
		The loss of head = $97.135 - 90.58 = 6.555$ m.	1	
		Total length of pipe = $120 + 150 + 60 = 330$ m.		
		Calculation of pressure at R		
		Length $SR = 60$		
		loss of head from to S to R= $\frac{60}{330} \times 6.555 = 1.19m$		
		Applying Bernoulli's theorem to points S to R,		
		$Z_{s} + \frac{P_{s}}{\gamma_{L}} + \frac{V_{s}^{2}}{2g} = Z_{r} + \frac{P_{R}}{\gamma_{L}} + \frac{V_{R}^{2}}{2g} + \text{head loss}$		
		$90+7.135+\frac{V_s^2}{2g}=75+\frac{P_R}{\gamma_L}+1.19$		
		$90 - 75 + 7.135 - 1.19 = \frac{P_R}{\gamma_L} \qquad (V_S = V_R)$		
		$\frac{P_R}{\gamma_L} = 20.945m$	2	

Subject & Code: Hydraulics(17421)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	b.	Pressure intensity at $R=P_R = 20.945 \times 9810$		101u1Kb
	Ans.	$P_R = 205470.45 N / m^2$		
		$P_{R} = 0.205 \ N \ / \ mm^{2}$		
		Calculation of pressure at P		
		loss of head from to Q to P= $\frac{120}{330} \times 6.555 = 2.38m$		
		$Z_{Q} + \frac{P_{Q}}{\gamma_{L}} + \frac{V_{Q}^{2}}{2g} = Z_{P} + \frac{P_{P}}{\gamma_{L}} + \frac{V_{P}^{2}}{2g} + \text{head loss}$		
		$45 + \frac{P_Q}{\gamma_L} = 60 + 30.58 + 2.38$		
		$\frac{P_{Q}}{r} = 47.96m$	2	
		$P_{Q} = 47.96 \times 9810$		
		$P_{Q} = 470523.27 \mathrm{N/m^{2}}$		
		$P_Q = 0.470 \mathrm{N/mm^2}$		8
	c.	The spillway of a tank discharge with a head of 1.5 m. The length of Crest is 10m. Calculate the dimensions of most economical section of trapezoidal channel with side slopes 1:1.5 (V:H) & bed slope 0.5/1000 .Assume Cd for weir = 0.78 Manning's N=0.016 Given,		
	Ans.	C_d for weir = 0.78		
		Length of weir $= 10 \text{ m}$		
		H for weir = 1.5 m		
		Side slopes = $1 : 1.5$ (V:H)		
		Bed slope = $0.5/1000 = 5 \times 10^{-4}$ For finding out discharge, use formula for weir		
		$Q = \frac{2}{3} \times C_d \times \sqrt{2g} \times L \times H^{\frac{3}{2}}$		
		$Q = \frac{2}{3} \times 0.78 \times 4.43 \times 10 \times (1.5)^{\frac{3}{2}}$	1	
		$Q = 42.32m^3 / s$		
		Now, For most economical trapezoidal section conditions are	1	
		$b + 2nd = 2d\sqrt{n^{2} + 1}$ $b + 2 \times 1.5 \times d = 2d\sqrt{(1.5)^{2} + 1}$		
		$b + 2 \times 1.5 \times d = 2d \sqrt{(1.5)^{+1}}$ b + 3d = 3.6d		
		b + 3a = 5.0a $b = 0.6d$	1	
		$A = bd + nd^2$		
		$A = 2.1d^2$	1	

Subject & Code: Hydraulics(17421)

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
Q.6	c. Ans.	Now, we know manning's formula $Q = \frac{A}{N} \times R^{\frac{2}{3}} \times S^{\frac{1}{2}}$ $44.32 = \frac{2.1d^2}{0.016} \times (\frac{d}{2})^{\frac{2}{3}} \times (5 \times 10^{-4})^{\frac{1}{2}}$	1	
		$44.32 = \frac{1}{0.016} \times \left(\frac{2}{2}\right)^{-1} \times \left(3 \times 10^{-1}\right)^{-1}$ $44.32 = 82.69 \times d^{\frac{2}{3}} \times d^{2} \times 0.22$ $44.32 = 1.82d^{2.67}$ $d^{2.67} = 23.25$	1	
		$d = (23.25)^{\frac{1}{2.67}}$ $d = (23.25)^{\frac{1}{2.67}}$ d = 2.37 And, b=0.6d	1	
		b= 0.6 x 2.37 b= 1.42 m	1	
		Therefore, dimensions of trapezoidal section b = 1.42 m d = 2.37 m		8

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Summer 2015
