WINTER - 2015 EXAMINATION

Subject: Surveying

Page No: $1 / \mathbf{1 8}$

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	A)	Attempt any SIX of the following:		12
	a)	Define surveying.		
	Ans.	Surveying- It is branch of civil engineering in which relative positions of ground points are determined by taking linear and angular measurement.	2	2
	b)	State any two uses of survey.	1	
	Ans:	Survey is useful for following: 1. To prepare a map or plan of the surveyed area for attaching it to legal documents. 2. To plot control points of boundries of locality 3. To determine relative heights or elevations of object. 4. To finalize and mark alignment i.e. center line of roadway, railway or runway routes. 5. To decide suitable gradient and camber of road depending on equal volume of cutting and filling.	(1 mark each Any two)	2

Que. No.	Sub. Que.	Model Answers		Marks	Total Marks
1)	B) a)	Attempt any TWO of the following: Draw conventional symbol for: i. Cutting ii. Road with bridge iii. Orchard iv. river		(1 mark each)	4
	Ans.	911711171717刀 (i) cutting (iii) Orchard (ii) Road with bridge (iv) River Fig. 2 : Conventional Symbols.			
	b)	Differentiate between plane surveying and geodetic surveying on any four points.		(1 mark each for any four of these)	
	Ans.	Plane surveying	Geodetic surveying		
		1.The area covered is less than $260 \mathrm{~km}^{2}$	1.The area covered is more than $260 \mathrm{~km}^{2}$		
		2. The distance between two ground points is straight.	2. The distance between two ground points is curve.		
		3. Simple survey instruments are useful like chain, compass, level etc.	3. advance survey instruments are necessary like theodolite, total station, GIS,GPS etc.		
		4.Carried out by state Govt. Agencies.	4.Carried out by central Govt. of India in collaboration with GTS Dept.		
		5.Cartesion co-ordinate formulae are useful.	5.Spherical trignometrical formulae are useful.		4
		6.Less accurate because no correction is applied.	6. More accurate because correction for curvature and refraction is applied.		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	a)			
		Procedure of indirect ranging. 1. If two stations i.e. A and B are not visible, then two intermediate points M_{1} and N_{1} are selected such that both stations will be intervisible from it. 2. Now, bisect the ranging rod at N_{1} from A and direct the rodman to move in line of AN_{1} to get a new position as N_{2} 3. Similarly, bisect the rod at M_{1} from B and move the rod at N to N_{1} to N_{2} 4. Again, by observing N_{2} and M_{2} from A and B respectively, find the new position of intermediate points N_{3} and N_{4}. 5. This should be continued till final points M and N are in line with AB , thus, ranging is said to be completed.	3	4
	b)	Draw a neat labeled sketch of 30 metric surveying chain.		
	Ans:	Bross handle		
		Fig. 4 : 30 meters metric choin	(2 marks for diagra m \& 2 marks for labelll ing)	
	$\begin{gathered} \text { c) } \\ \text { Ans: } \end{gathered}$	State and describe the types of offsets. 1. Perpendicular offset- When the offset is taken at 90° to the survey line, then it is known as perpendicular offset. 2. Oblique offset- When the offset is taken at an angle other than 90° (say 30° or 120°) to the survey line, then it is known as Oblique offset. 3. Long offset- When the offset is taken at a distance more than 15 m from the survey line, then it is known as Long offset.	(1 mark each for any four of these)	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	c) d) Ans:	4. Short offset- When the offset is taken at a distance less than 15 m from the survey line, then it is known as Short offset. 5. Swing offset- when offset is set by swinging chain or tape to survey line, such formed offset is called Swing offset. Describe stepping method of chaining on sloping ground. Fig. 5 : Stepping method 1. If A and B are the two points on sloping ground, for which horizontal distance is to be measured. 2. Unfold the chain. By touching handle to station A, stretch it up to maximum possible distance (without sag). 3. Suspend the plumb-bob from that stretched point and mark the point C on ground. 4. Now measure the distance L_{1} on chain by counting brass rings, brass talleys and links accurately. 5. Now, from point C, repeat steps 2,3and 4 up to station B and note down corresponding horizontal distances $\mathrm{L}_{2}, \mathrm{~L}_{3}$ etc. 6. Thus total horizontal distance on sloping ground is calculated as $d(A B)=L_{1}+L_{2}+L_{3}$ in meters.	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	f)	Working of optical square- 1. Optical square works on principle of optical square to set perpendicular offset 2. Keep ranging rods at point B and C as shown in fig. 3. Observe the both rods through eye vane of optical square ass in figure 6(b) i.e. one direct image and other reflected image. 4. Now, move the along survey line AB with looking through optical square, till both rods coincided as in figure6(c) 5. Once, both rods matched each other point D can be marked on ground and distance CD is measured as perpendicular offset.	2	4
3)	a) Ans:	Attempt any FOUR of the following: Describe any one method to overcome an obstacle in chaining, where vision is free but only chaining is obstructed. 1. Suppose $A B$ is chain line. Two points $C \& D$ are selected on it, on opposite banks of pond. 2. Perpendicular are erected at point C and draw a line CE . 3. Then join the point C and D . 3. The pond may be crossed by forming a triangle as shown in figure. 4. then, by rule, $\mathrm{CD}=\sqrt{C E^{2}+C D^{2}}$	16	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)	b)	List any four component parts of prismatic compass and state its function.		
	Ans:	Component parts of prismatic compass are as follows.	(112	
		1. Break pin 5. Adjustable Mirror	Mark	
		2. Lifting pin 6. Sun Glasses	each	
		3. Sight vane 7. Magnetic needle	any	
		4. Graduated ring 8. Pivot	four)	
		1. Break pin - It is used to stop the oscillation of aluminum ring. 2. Lifting pin - It lifts the magnetic needle when sight vane is folded.		
		3. Sight vane - It is used to observe object. 4. Graduated ring - It is used to observe the angle.	(112	
		5. Adjustable Mirror - to bisect the object when it is too high or too low from the line of collimation.	Mark each	4
		6.Sun Glasses - Used bisect the luminous object to reduce strain on eyes. 7. Magnetic needle- To direct magnetic north. 8. Pivot- To support the magnetic needle.	any four)	
	c) Ans:	Describe quadrantal bearing system. State the purpose it is used.		
		Quadrantal Bearing - 1. The magnetic bearing of line measured clockwise or anticlockwise from north or south pole whichever is nearer. 2. These bearings are also called as reduced bearings. 3. These are observed by surveyors compass 4. Its value is between 0^{0} to 90°. 5. It consists of four quadrants - N-E, S-E, S-W, N-W.	3	
		Purposes- 1. It is used to measure bearing of survey lines in a closed traverse. 2. It is used to calculate back bearing for respective quadrants.	1	4
	d)	Define true bearing and magnetic bearing.		
	Ans:	1. True bearing - (i) The angle between true meridian or geographical north and any line known as true bearing.	2	
		2.Magnetic bearing-(i)The angle between magnetic meridian and any line is known as magnetic bearing.	2	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	b)	Describe back sighting method of orientation of plane table surveying.		
	Ans:	Backsight method of orientation- 1. Assume we have to orient the table at next station ' B ' represented on paper by point ' b '. 2.the line ' ba ' is drawn on previous station ' A '. 3.the alidade is kept on line 'ba' and the table is turned around its vertical axis such a way that line of sight passes through ground station 'A'. 4. When the plotted line ' $a b$ ' coincides with line ' AB ' and table will be oriented.	3	
			1	4
	c)	List the different accessories with their use for plane table survey. Accessories in plane table survey- 1. Alidade- it is used to bisect the object and draw a ray on drawing sheet. 2. Spirit level-It is used for levelling of plane table 3. Trough compass-It is used to mark north direction 4. \mathbf{U} fork and plumb bob - It is used for centering if plane table.		4
	d) Ans:	Describe intersection method of plane table with a neat sketch. Intersection method of plane tabling- 1. Lay out a base line AB and measure it and Plot a distance ' $a b$ ' on sheet using any scale. 2.Set up instrument at ' A ' with ' a ' over ' A ' 3.Orient the table by placing alidade ' $a b$ ' and turn table until ranging rod at ' B ' is bisected and clamp it.	3	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	d)	4. With alidade touching point ' a ' draw rays $1,2,3,4,5$ of indefinite length as shown in figure below. 5. The table is then moved to station ' B ' orient by back sighting on ' A '. Draw rays towards points previously sighted i.e. $6,7,8,9$ rays are drawn to determine points intersection, $\mathrm{d}, \mathrm{g}, \mathrm{f}, \mathrm{c}$.	1	4
	e) Ans:	State any four advantages of plane table surveying. Advantages of plane table surveying- 1. It is most rapid method and suitable for small scale. 2. there is no need of field book. 3. Irregular objects may be represented properly. 4. it is suitable in magnetic area. 5. The surveyor can compare the plotted work with the actual features of the area. 6. It is less costly. 7. No greater skill is required to prepare map.	(1 mark each any four of these)	4
	f) Ans:	Define 1. Level surface 2. Line of collimation 3. Axis of bubble tube 4. Fore sight 1. Level surface- The curved surface which is parallel to the mean spheroidal earth surface, is known as level surface. 2. Line of collimation- It is the imaginary line joining optical center of the objective glass and intersection of cross hairs. 3.Axis of bubble tube - An imaginary line tangential to the longitudinal curve of the bubble at its midpoint is known as axis of bubble tube. 4. Foresight - It is last staff reading taken before shifting the instrument.	1 1 1 1	4

Que. No.	Sub. Que.	Model Answers
5)	d)	What is fly levelling? When it is carried out?
Ans.	Fly levelling- It is the levelling operation in whic taken and no intermediate sights are observed. It is carried out when 1. To connect the BM to the starting point of 2. To establish the BM.	
3. To determine approximate reduced levels		
with more speed and less accurate.		

Ans.

1. Setting up the level.

a. The level fixed on tripod.
b. The legs of tripod stand are well spread so that the level will remain stable on tripod.
c. Bring all the three foot screws in the Centre of their run so that they can be turned clockwise or anticlockwise as required, for levelling purpose
d. Adjust the height of the instrument so that the observer can comfortably see through the telescope and note the readings.
e. Fix two legs of tripod and adjust third leg in such a way that the levelling head will become as horizontal as possible by eye judgment.

2. Levelling up the level.

a. The base of the tripod is already leveled with the help of cross bubble.
b. To make accurate adjustment of the level, the longitudinal level is adjusted in the Centre of its run, with the help of three foot screws.
c. Make the bubble parallel to the any selected pair of foot screws. Now; turn both the foot screws either inward or outward with the help of foot screws till the bubble appears in the center.
d. Turn the telescope through 90° as shown in fig. below and now with the help of third screw bring the bubble of levelling tube in the center.

Subject \& Code: SUY (17310)
Page No. 15/18

